6 resultados para Fold-saddle singularity
em Cambridge University Engineering Department Publications Database
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
Significant progress has been made towards understanding the global stability of slowly-developing shear flows. The WKBJ theory developed by Patrick Huerre and his co-authors has proved absolutely central, with the result that both the linear and the nonlinear stability of a wide range of flows can now be understood in terms of their local absolute/convective instability properties. In many situations, the local absolute frequency possesses a single dominant saddle point in complex X-space (where X is the slow streamwise coordinate of the base flow), which then acts as a single wavemaker driving the entire global linear dynamics. In this paper we consider the more complicated case in which multiple saddles may act as the wavemaker for different values of some control parameter. We derive a frequency selection criterion in the general case, which is then validated against numerical results for the linearized third-order Ginzburg-Landau equation (which possesses two saddle points). We believe that this theory may be relevant to a number of flows, including the boundary layer on a rotating disk and the eccentric Taylor-Couette-Poiseuille flow. © 2014 Elsevier Masson SAS. All rights reserved.