9 resultados para Flush Speciation

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 8 × 8 pipelined parallel multiplier which uses the Dadda scheme is presented. The multiplier has been implemented in a 3-μm n-well CMOS process with two layers of metal using a standard cell automatic placement and routing program. The design uses a form of pipelined carry look-ahead adder in the final stage of summation, thus providing a significant contribution to the high performance of the multiplier. The design is expected to operate at a clock frequency of at least 50 MHz and has a flush time of seven clock cycles. The design illustrates a possible method of implementing an irregular architecture in VLSI using multiple levels of low-resistance, low-capacitance interconnect and automated layout techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three effectiveness measures based on the ability of a flow to flush buoyancy from a ventilated space proposed by Coffey and Hunt [Ventilation effectiveness measures based on heat removal-part 1. Definitions. Building and Environment, in press, doi:10.1016/j.buildenv.2006.03.016.] are applied to assess and compare two fundamental natural ventilation flows. We focus on the limiting cases of passive displacement and passive mixing ventilation flows during transient conditions. These transient flows occur when, for example, heat is purged from a building at night. Whilst it is widely recognised that mixing flows are less efficient at purging heat than displacement flows, our results indicate that, when a particular zone of a room is considered, displacement ventilation can result in lower effectiveness than mixing ventilation. When a room is considered as a whole, displacement ventilation yields higher effectiveness than mixing ventilation and we quantify these differences in terms of the geometry of the space and opening area. The proposed theoretical predictions are compared with effectiveness deduced from measurements made during laboratory experiments and show good agreement. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of ventilation flows is considered from the perspective of buoyancy (or heat) removal from a space. This perspective is distinct from the standard in which the effectiveness is based on the concentrations of a neutrally buoyant contaminant/passive tracer. Three new measures of effectiveness are proposed based on the ability of a flow to flush buoyancy from a ventilated space. These measures provide estimates of instantaneous and time-averaged effectiveness for the entire space, and local effectiveness at any height of interest. From a generalisation of the latter, a vertical profile of effectiveness is defined. These measures enable quantitative comparisons to be made between different flows and they are applicable when there is a difference in density (as is typical due to temperature differences) between the interior environment and the replacement air. Applications, therefore, include natural ventilation, hybrid ventilation and a range of forced ventilation flows. Finally, we demonstrate how the ventilation effectiveness of a room may be assessed from simple traces of temperature versus time. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the time taken to flush pollutants from a naturally ventilated room. A simple theoretical model is developed to predict the time taken for neutrally-buoyant pollutants to be removed from a room by a flow driven by localised heat inputs; both line and point heat sources are considered. We show that the rate of flushing is a function of the room volume, vent areas ( A) and the distribution, number (n) and strength (B) of the heat sources. We also show that the entire problem can be reduced to a single parameter ( μ) that is a measure of the vent areas, and a dimensionless time ( τ) that is a function of B, V and μ. Small-scale salt-bath experiments were conducted to measure the flushing rates in order to validate our modelling assumptions and predictions. The predicted flushing times show good agreement with the experiments over a wide range of μ. We apply our model to a typical open plan office and lecture theatre and discuss some of the implications of our results. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate description of sound propagation in a duct is important to obtain the sound power radiating from a source in both near and far fields. A technique has been developed and applied to decompose higher-order modes of sound emitted into a duct. Traditional experiments and theory based on two-sensor methods are limited to the plane-wave contribution to the sound field at low frequency. Due to the increase in independent measurements required, a computational method has been developed to simulate sensitivities of real measurements (e.g., noise) and optimize the set-up. An experimental rig has been constructed to decompose the first two modes using six independent measurements from surface, flush-mounted microphones. Experiments were initially performed using a loudspeaker as the source for validation. Subsequently, the sound emitted by a mixed-flow fan has been investigated and compared to measurements made in accordance with the internationally standardized in-duct fan measurement method. This method utilizes large anechoic terminations and a procedure involving averaging over measurements in space and time to account for the contribution from higher-order modes. The new method does not require either of these added complications and gives detail about the underlying modal content of the emitted sound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.