84 resultados para Finite-dimensional discrete phase spaces
em Cambridge University Engineering Department Publications Database
Resumo:
A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.
Resumo:
The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one-dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross-correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross-correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loop under steady-state condition. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.
Resumo:
A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.
Resumo:
A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.
Resumo:
A method is given for solving an optimal H2 approximation problem for SISO linear time-invariant stable systems. The method, based on constructive algebra, guarantees that the global optimum is found; it does not involve any gradient-based search, and hence avoids the usual problems of local minima. We examine mostly the case when the model order is reduced by one, and when the original system has distinct poles. This case exhibits special structure which allows us to provide a complete solution. The problem is converted into linear algebra by exhibiting a finite-dimensional basis for a certain space, and can then be solved by eigenvalue calculations, following the methods developed by Stetter and Moeller. The use of Buchberger's algorithm is avoided by writing the first-order optimality conditions in a special form, from which a Groebner basis is immediately available. Compared with our previous work the method presented here has much smaller time and memory requirements, and can therefore be applied to systems of significantly higher McMillan degree. In addition, some hypotheses which were required in the previous work have been removed. Some examples are included.
Resumo:
Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.
Resumo:
Synchronization is now well established as representing coherent behaviour between two or more otherwise autonomous nonlinear systems subject to some degree of coupling. Such behaviour has mainly been studied to date, however, in relatively low-dimensional discrete systems or networks. But the possibility of similar kinds of behaviour in continuous or extended spatiotemporal systems has many potential practical implications, especially in various areas of geophysics. We review here a range of cyclically varying phenomena within the Earth's climate system for which there may be some evidence or indication of the possibility of synchronized behaviour, albeit perhaps imperfect or highly intermittent. The exploitation of this approach is still at a relatively early stage within climate science and dynamics, in which the climate system is regarded as a hierarchy of many coupled sub-systems with complex nonlinear feedbacks and forcings. The possibility of synchronization between climate oscillations (global or local) and a predictable external forcing raises important questions of how models of such phenomena can be validated and verified, since the resulting response may be relatively insensitive to the details of the model being synchronized. The use of laboratory analogues may therefore have an important role to play in the study of natural systems that can only be observed and for which controlled experiments are impossible. We go on to demonstrate that synchronization can be observed in the laboratory, even in weakly coupled fluid dynamical systems that may serve as direct analogues of the behaviour of major components of the Earth's climate system. The potential implications and observability of these effects in the long-term climate variability of the Earth is further discussed. © 2010 Springer-Verlag Berlin Heidelberg.