125 resultados para Finite embeddability property
em Cambridge University Engineering Department Publications Database
Resumo:
Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.
Resumo:
Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.
Resumo:
This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
The objective of the present study is to assess the capabilities of a recently developed mechanism-based model for inelastic deformation and damage in structural ceramics. In addition to conventional lattice plasticity, the model accounts for microcrack growth and coalescence as well as granular flow following comminution. The assessment is made through a coupled experimental/computational study of the indentation response of a commercial armor ceramic. The experiments include examinations of subsurface damage zones along with measurements of residual surface profiles and residual near-surface stresses. Extensive finite element computations are conducted in parallel. Comparisons between experiment and simulation indicate that the most discriminating metric in the assessment is the spatial extent of subsurface damage following indentation. Residual stresses provide additional validation. In contrast, surface profiles of indents are dictated largely by lattice plasticity and thus provide minimal additional insight into the inelastic deformation resulting from microcracking or granular flow. A satisfactory level of correlation is obtained using property values that are either measured directly or estimated from physically based arguments, without undue reliance on adjustable (nonphysical) parameters. © 2011 The American Ceramic Society.
Resumo:
Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.