63 resultados para Fiber nonlinear optics

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the amplification of 10-100-pJ semiconductor diode pulses to an energy of 158 μJ and peak powers >100 kW in a multistage fiber amplifier chain based on a single-mode, large-mode-area erbium-doped amplifier design. To our knowledge these results represent the highest single-mode pulse energy extracted from any doped-fiber system. © 1997 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ~2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. ©2011 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 ìm misalignment tolerance. © OSA/OFC/NFOEC 2011.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Broadband radio over fiber systems, which can simultaneously distribute multiple wireless services and enable remote sensing, are reviewed. The systems are used to demonstrate improved remote passive RFID tag detection through the use of multiple antennas. © 2009 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the first time, mode group division multiplexing is achieved in a multimode fiber link using a 2-D Hermite-Gaussian mode launch. 20 Gb/s error-free transmission is achieved over a 250 m worst-case OM1 multimode fiber link. © OSA 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An APD is shown to improve the noise figure of a lossy optical link compared to a PIN-TIA combination of equivalent gain. Transmission of IEEE 802.11g WLAN signals is demonstrated with 18dB optical link loss. © 2009 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel launch scheme is proposed for multimode-fiber (MMF) links. Enhanced performance in 10 Gb/s MMF links using electronic equalization is demonstrated by statistical analysis of installed-base fiber and an experimental investigation. © 2007 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uncooled directly-modulated 1.3μm VCSELs are shown to exhibit dynamic range, linearity and noise performance required for wireless LAN applications. A multimode fiber based WLAN 802.11b system shows performances comparable to systems with state-of-the-art DFB lasers. © 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uncooled directly-modulated 1.3μm VCSELs are shown to exhibit dynamic range, linearity and noise performance required for wireless LAN applications. A multimode fiber based WLAN 802.11b system shows performances comparable to systems with state-of-the-art DFB lasers. © 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.