16 resultados para FernaÌndez de Avellaneda, Alonso.
em Cambridge University Engineering Department Publications Database
Resumo:
Axial and journal bearings have been investigated for use in superconducting flywheel systems. Our test rig comprises of an Evershed type magnetic bearing used to levitate a 35 kg rotor. The stabilizing forces are provided by superconducting axial and journal bearings. In this study we focus on the vertical stiffness measurements and explore the use of journal bearings. The journal bearing consists of radial magnets with alternating polarities. Our results indicate that this type of journal bearing can effectively stabilize the rotor. Spin-down test shows a linear behavior.
Resumo:
This paper presents research into superconducting Micro-Bearings for MEMS systems. Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-engineered moving mechanical systems. These devices commonly known as Micro-ElectroMechanical Systems (MEMS) have many potential advantages. In many respects the effect of scaling a machine from macro-sized to micro-sized are either neutral or beneficial. However in one important respect the scaling produces a severely detrimental effect. That respect is in the tribology and the subsequent wear on the high speed rotating machines. This leads to very short device lifetimes. This paper presents results obtained from a MEMS motor supported on superconducting bearings. The bearings are self-positioning, relying on, the Meissner effect to provide a levitation force which moves the rotor into position and flux pinning to provide stability thereafter. The rotor is driven by a simple electrostatic type motor in which photo resist is used to pattern the motor poles directly onto the rotor. © 2005 IEEE.