43 resultados para Fan Culture

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campylobacter jejuni is an important food-borne pathogen. However, relatively little is understood regarding its pathogenesis, and research is hampered by the lack of a suitable model. Recently, a number of groups have developed assays to study the pathogenic mechanisms of C. jejuni using cell culture models. Here, we report the development of an ex vivo organ culture model, allowing for the maintenance of intestinal mucosal tissue, to permit more complex host-bacterium interactions to be studied. Ex vivo organ culture highlights the propensity for C. jejuni to adhere to mucosal tissue via the flagellum, either as discrete colonies or as multicellular units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. In this paper, we focus on LES calculations of noise sources on and close to a blade trailing edge. We consider two test cases; one an isolated NACA0012 airfoil in flow, and the other an industry-standard rotating fan. In the first case, turbulent mean and RMS velocities and energy spectra at different locations are compared with those from experiment. 1,2The sound generated by the unsteady pressure fluctuations on the airfoil surface and by the flow turbulence will be predicted using a Ffowcs Williams Hawkings (FW-H) surface. In the second case, unsteady flow and acoustic fields around the blade passage 3 are presented for a refined mesh, and the rotor-stator tonal noise will be predicted by using the rotor-wake mean velocity profile and the methodology described in Lloyd & Peake 4. Copyright © 2009 by Qinling Li, Nigel Peake & Mark Savill.

Relevância:

20.00% 20.00%

Publicador: