52 resultados para FILM STRESS

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach is presented to resolve bias-induced metastability mechanisms in hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The post stress relaxation of threshold voltage (V(T)) was employed to quantitatively distinguish between the charge trapping process in gate dielectric and defect state creation in active layer of transistor. The kinetics of the charge de-trapping from the SiN traps is analytically modeled and a Gaussian distribution of gap states is extracted for the SiN. Indeed, the relaxation in V(T) is in good agreement with the theory underlying the kinetics of charge de-trapping from gate dielectric. For the TFTs used in this work, the charge trapping in the SiN gate dielectric is shown to be the dominant metastability mechanism even at bias stress levels as low as 10 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passivated Hf-In-Zn-O (HIZO) thin film transistors suffer from a negative threshold voltage shift under visible light stress due to persistent photoconductivity (PPC). Ionization of oxygen vacancy sites is identified as the origin of the PPC following observations of its temperature- and wavelength-dependence. This is further corroborated by the photoluminescence spectrum of the HIZO. We also show that the gate voltage can control the decay of PPC in the dark, giving rise to a memory action. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed phase carbon-diamond films which consist of small grain diamond in an a:C matrix were deposited on polished Si using a radio frequency CH4 Ar plasma CVD deposition process. Ellipsometry, surface profilometry, scanning electron microscopy (SEM) and spectrophotometry were used to analyse these films. Film thicknesses were typically 50-100 nm with a surface roughness of ± 30 A ̊ over centimetre length scans. SEM analysis showed the films were smooth and pinhole free. The Si substrate was etched using backside masking and a directional etch to give taut carbon-diamond membranes on a Si grid. Spectrophotometry was used to analyse the optical properties of these membranes. Band gap control was achieved by varying the dc bias of the deposition process. Band gaps of 1.2 eV to 4.0 eV were achieved in these membranes. A technique for controlling the compressive stress in the films, which can range from 0.02 to 7.5 GPa has been employed. This has allowed the fabrication of thin, low stress, high band gap membranes that are extremely tough and chemically inert. Such carbon-diamond membranes seem promising for applications as windows in analytical instruments. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For Micro-electro-mechanical System (MEMS) applications, TiNi-based thin film Shape Memory Alloys (SMAs) possess many desirable properties, such as high power density, large transformation stress and strain upon heating and cooling, superelasticity and biocompatibility. In this paper, recent development in TiNi-based thin film SMA and microactuator applications is discussed. The topics related to film deposition and characterisation is mainly focused on crystal nucleation and growth during annealing, film thickness effect, film texture, stress induced surface relief, wrinkling and trenches as well as Temperature Memory Effect (TME). The microactuator applications are mainly focused on microvalve and microcage for biological applications, micromirror for optical applications and data storage using nanoindentation method. Copyright © 2009, Inderscience Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.