116 resultados para FIBER GLASS

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive modelocking using carbon nanotubes is achieved in a linear cavity waveguide laser realized by ultrafast laser inscription in ytterbium doped bismuthate glass. The pulses observed under a Q-switched envelope have a repetition rate of 1.5 GHz. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate passive mode-locking of a bismuth-doped fiber laser using a singlewall nanotube-based saturable absorber. Stable operation in the all-normal dispersion and average soliton regime is obtained, with an all-fiber integrated format. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.