5 resultados para FCC

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We synthesize Co nanorod filled inside multi-walled CNTs (MWCNTs) by microwave plasma enhanced chemical vapor deposition (MPECVD) and utilize off-axis electron holography to observe the remanent states of the filled metal nanorod inside MWCNTs at room. The MWCNTs grew up to 100-110 nm in diameter and 1.5-1.7 μm in length. The typical bright-field transmission electron microscope (TEM) images revealed both Co/Pd multisegment nanorod and Co nanorod filled inside MWCNTs on the same substrate. We have also performed energy-dispersive X-ray spectrometer (EDS) measurements to characterize the composition of metal filled inside MWCNTs. Based on high-resolution TEM measurements, we observed the face-centered-cubic (fcc) Co filled inside MWCNT. The component of magnetic induction was then measured to be 1.2±0.1 T, which is lower than the expected saturation magnetization of fcc Co of 1.7 T. The partial oxidation of the ferromagnetic metal during the process and the magnetization direction may play an important role in the determination of the quality of the remanent states. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small scale yielding around a mode I crack is analysed using polycrystalline discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modelled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, nucleation, interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Grain boundaries are modelled as impenetrable to dislocations. The polycrystalline material is taken to consist of two types of square grains, one of which has a bcc-like orientation and the other an fcc-like orientation. For both orientations there are three active slip systems. Alternating rows, alternating columns and a checker-board-like arrangement of the grains is used to construct the polycrystalline materials. Consistent with the increasing yield strength of the polycrystalline material with decreasing grain size, the calculations predict a decrease in both the plastic zone size and the crack-tip opening displacement for a given applied mode I stress intensity factor. Furthermore, slip-band and kink-band formation is inhibited by all grain arrangements and, with decreasing grain size, the stress and strain distributions more closely resemble the HRR fields with the crack-tip opening approximately inversely proportional to the yield strength of the polycrystalline materials. The calculations predict a reduction in fracture toughness with decreasing grain size associated with the grain boundaries acting as effective barriers to dislocation motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron-carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes. © 2012 American Chemical Society.