41 resultados para Exponential integrators
em Cambridge University Engineering Department Publications Database
Resumo:
Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS]) in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host-pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host-pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics. © 2008 Grant et al.
Resumo:
We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.
Resumo:
In previous papers (S. Adhikari and J. Woodhouse 2001 Journal of Sound and Vibration 243, 43-61; 63-88; S. Adhikari and J. Woodhouse 2002 Journal of Sound and Vibration 251, 477-490) methods were proposed to obtain the coefficient matrix for a viscous damping model or a non-viscous damping model with an exponential relaxation function, from measured complex natural frequencies and modes. In all these works, it has been assumed that exact complex natural frequencies and complex modes are known. In reality, this will not be the case. The purpose of this paper is to analyze the sensitivity of the identified damping matrices to measurement errors. By using numerical and analytical studies it is shown that the proposed methods can indeed be expected to give useful results from moderately noisy data provided a correct damping model is selected for fitting. Indications are also given of what level of noise in the measured modal properties is needed to mask the true physical behaviour.