6 resultados para Explicit hazard model

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The architecture of model predictive control (MPC), with its explicit internal model and constrained optimization is presented. Since MPC relies on an explicit internal model, one can imagine dealing with failures by updating the internal model, and letting the on-line optimizer work out how to control the system in its new condition. This aspects rely on assumptions such that the nature of the fault can be located, and the model can be updated automatically. A standard form of MPC, with linear inequality constraints on inputs and outputs, linear internal model, and quadriatic cost function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical dialog systems (SDSs) are motivated by the need for a data-driven framework that reduces the cost of laboriously handcrafting complex dialog managers and that provides robustness against the errors created by speech recognizers operating in noisy environments. By including an explicit Bayesian model of uncertainty and by optimizing the policy via a reward-driven process, partially observable Markov decision processes (POMDPs) provide such a framework. However, exact model representation and optimization is computationally intractable. Hence, the practical application of POMDP-based systems requires efficient algorithms and carefully constructed approximations. This review article provides an overview of the current state of the art in the development of POMDP-based spoken dialog systems. © 1963-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.