4 resultados para Exchange Properties
em Cambridge University Engineering Department Publications Database
Resumo:
Here we demonstrate a novel application that employs the ion exchange properties of conducting polymers (CP) to modulate the detection window of a CP based biosensor under electrical stimuli. The detection window can be modulated by electrochemically controlling the degree of swelling of the CP associated with ion transport in and out of the polymer. We show that the modulation in the detection window of a caffeine imprinted polypyrrole biosensor, and by extension other CP based biosensors, can be achieved with this mechanism. Such dynamic modulation in the detection window has great potential for the development of smart biosensors, where the sensitivity of the sensor can be dynamically optimized for a specific test solution.
Resumo:
The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22 eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31 eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41 eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.
Resumo:
Spherical indentation creep testing was used to examine the effect of hydration state on bone mechanical properties. Analysis of creep data was based on the elastic-viscoelastic correspondence principle and utilized a direct solution for the finite loading-rate experimental conditions. The zero-time shear modulus was computed from the creep compliance function and compared to the indentation modulus obtained via conventional indentation analysis, based on an elastic unloading response. The method was validated using a well-known polymer material under three different loading conditions. The method was applied to bone samples prepared with different water content by partial exchange with ethanol, where 70% ethanol was considered as the baseline condition. A hydration increase was associated with a 43% decrease in stiffness, while a hydration decrease resulted in a 20% increase in bone tissue stiffness.