45 resultados para Evolution equations
em Cambridge University Engineering Department Publications Database
Resumo:
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.
Resumo:
In a previous study [M. Hameed, J. Fluid Mech. 594, 307 (2008)] the authors investigated the influence of insoluble surfactant on the evolution of a stretched, inviscid bubble surrounded by a viscous fluid via direct numerical simulation of the Navier-Stokes equations, and showed that the presence of surfactant can cause the bubble to contract and form a quasisteady slender thread connecting parent bubbles, instead of proceeding directly toward pinch-off as occurs for a surfactant-free bubble. Insoluble surfactant significantly retards pinch-off and the thread is stabilized by a balance between internal pressure and reduced capillary pressure due to a high concentration of surfactant that develops during the initial stage of contraction. In the present study we investigate the influence of surfactant solubility on thread formation. The adsorption-desorption kinetics for solubility is in the diffusion controlled regime. A long-wave model for the evolution of a capillary jet is also studied in the Stokes flow limit, and shows dynamics that are similar to those of the evolving bubble. With soluble surfactant, depending on parameter values, a slender thread forms but can pinch-off later due to exchange of surfactant between the interface and exterior bulk flow. © 2009 American Institute of Physics.