16 resultados para Evidence Based Design (EBD)
em Cambridge University Engineering Department Publications Database
Resumo:
A computer can assist the process of design by analogy by recording past designs. The experience these represent could be much wider than that of designers using the system, who therefore need to identify potential cases of interest. If the computer assists with this lookup, the designers can concentrate on the more interesting aspect of extracting and using the ideas which are found. However, as the knowledge base grows it becomes ever harder to find relevant cases using a keyword indexing scheme without knowing precisely what to look for. Therefore a more flexible searching system is needed.
If a similarity measure can be defined for the features of the designs, then it is possible to match and cluster them. Using a simple measure like co-occurrence of features within a particular case would allow this to happen without human intervention, which is tedious and time- consuming. Any knowledge that is acquired about how features are related to each other will be very shallow: it is not intended as a cognitive model for how humans understand, learn, or retrieve information, but more an attempt to make effective, efficient use of the information available. The question remains of whether such shallow knowledge is sufficient for the task.
A system to retrieve information from a large database is described. It uses co-occurrences to relate keywords to each other, and then extends search queries with similar words. This seems to make relevant material more accessible, providing hope that this retrieval technique can be applied to a broader knowledge base.
Resumo:
To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.
Resumo:
In this article we call for a new approach to patient safety improvement, one based on the emerging field of evidence-based healthcare risk management (EBHRM). We explore EBHRM in the broader context of the evidence-based healthcare movement, assess the benefits and challenges that might arise in adopting an evidence-based approach, and make recommendations for meeting those challenges and realizing the benefits of a more scientific approach.
Resumo:
Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.
Resumo:
This report presents the stepwise development of requirements for a process-based design support system aimed at improving the engineering design process. The starting point was the set of characteristics identified in three sources: models of design processes in prescriptive literature; empirical studies of design in descriptive literature; and a case-study in industry. All identified characteristics and derived requirements are listed in this report.