10 resultados para Escape from Vehicle.

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses. © 2013 Institut Pasteur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper uses a patent data set to identify factors fostering innovation of diesel engines between 1974 and 2010 in the OECD region. The propensity of engine producers to innovate grew by 1.9 standard deviations after the expansion of the car market, by 0.7 standard deviations following a shift in the EU fuel economy standard, and by 0.23 standard deviations. The propensity to develop emissions control techniques was positively influenced by pollution control laws introduced in Japan, in the US, and in the EU, but not with the expansion of the car market. Furthermore, a decline in loan rates stimulated the propensity to develop emissions control techniques, which were simultaneously crowded out by increases in publicly-funded transport research and development. Innovation activities in engine efficiency are explained by market size, loan rates and by (Organisation for Economic Cooperation and Development) diesel prices, inclusive of taxes. Price effects on innovation, outweigh that of the US corporate average fuel economy standards. Innovation is also positively influenced by past transport research and development. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric systems are viewed as a promising approach to energy harvesting from environmental vibrations. The energy harvested from real vibration sources is usually difficult to estimate analytically. Therefore, it is hard to optimise the associated energy harvesting system. This work investigates the optimisation of a piezoelectric cantilever system using a genetic algorithm based approach with numerical simulations. The genetic algorithm globally considers the effects of each parameter to produce an optimal frequency response to scavenge more energy from the real vibrations while the conventional sinusoidal based method can only optimise the resistive load for a given resonant frequency. Experimental acceleration data from the vibrations of a vehicle-excited manhole cover demonstrates that the optimised harvester automatically selects the right frequency and also synchronously optimises the damper and the resistive load. This method shows great potential for optimizing the energy harvesting systems with real vibration data. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article introduces Periodically Controlled Hybrid Automata (PCHA) for modular specification of embedded control systems. In a PCHA, control actions that change the control input to the plant occur roughly periodically, while other actions that update the state of the controller may occur in the interim. Such actions could model, for example, sensor updates and information received from higher-level planning modules that change the set point of the controller. Based on periodicity and subtangential conditions, a new sufficient condition for verifying invariant properties of PCHAs is presented. For PCHAs with polynomial continuous vector fields, it is possible to check these conditions automatically using, for example, quantifier elimination or sum of squares decomposition. We examine the feasibility of this automatic approach on a small example. The proposed technique is also used to manually verify safety and progress properties of a fairly complex planner-controller subsystem of an autonomous ground vehicle. Geometric properties of planner-generated paths are derived which guarantee that such paths can be safely followed by the controller. © 2012 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.