130 resultados para Error Probability
em Cambridge University Engineering Department Publications Database
Resumo:
New space-time trellis codes with four- and eight-level phase-shift keying (PSK) and 16-phase quadrature amplitude modulation (QAM) for two transmit antennas in slow-fading channels are presented in this paper. Unlike most of the codes that are reported in the literature, the proposed codes are specifically designed to minimize the frame error probability from a union-bound perspective. The performance of the proposed codes with various memory orders and receive antennas is evaluated by simulation. It is shown that the proposed codes outperform previously known codes in all studied cases.
Resumo:
We derive a random-coding upper bound on the average probability of error of joint source-channel coding that recovers Csiszár's error exponent when used with product distributions over the channel inputs. Our proof technique for the error probability analysis employs a code construction for which source messages are assigned to subsets and codewords are generated with a distribution that depends on the subset. © 2012 IEEE.
Resumo:
We show that the meta-converse bound derived by Polyanskiy et al. provides the exact error probability for a fixed joint source-channel code and an appropriate choice of the bound parameters. While the expression is not computable in general, it identifies the weaknesses of known converse bounds to the minimum achievable error probability. © 2013 IEEE.
Resumo:
This paper considers channel coding for the memoryless multiple-access channel with a given (possibly suboptimal) decoding rule. Non-asymptotic bounds on the error probability are given, and a cost-constrained random-coding ensemble is used to obtain an achievable error exponent. The achievable rate region recovered by the error exponent coincides with that of Lapidoth in the discrete memoryless case, and remains valid for more general alphabets. © 2013 IEEE.