30 resultados para Epidermal Permeability
em Cambridge University Engineering Department Publications Database
Resumo:
This paper reports an experimental investigation of the vertical and horizontal permeabilities of speswhite kaolin clay. The permeabilities were measured using falling head permeability tests. A modification to a conventional oedometer was devised so that either vertical or horizontal permeabilities could be determined. It was found that the vertical and horizontal permeabilities of the clay slurry were similar, but that as the clay was consolidated one dimensionally the anisotropy of the clay fabric resulted in a greater horizontal permeability than the vertical permeability at any void ratio. Both permeabilities were uniquely related to the void ratio.
Resumo:
The writers wish to present some additional data obtained independently and with different techniques that confirm the results published in the paper. For these tests, the speswhite kaolin clay was prepared as a slurry with a water content of 133 percent and was then consolidated one-dimensionally under an axial stress of 100 kPa in a 203 mm dia. tube. The results presented here show that the anisotropy of permeability is completely preserved (even after the sample is compressed isotropical) as long as the initial part of the stress path corresponds to one-dimensional compression. The data supports the speculation by the authors regarding permeability anisotropy for stress paths other than one-dimensional compression.
Resumo:
Centrifuge tests were carried out to determine the effect of 5 different water-soluble chemicals on a thin consolidated disc of clay. The evolution of changes in the clay permeability with time was investigated and other structural changes due to chemical attack were monitored. The findings presented here demonstrate that the permeability of the clay appear to be generally related to the polarity of the chemicals and the dielectric constant, with the exception of Butanol. In the case of Butanol at low flow rate and low stress level, the action of the chemical caused the clay to crack, with a consequent large increase in flow.