21 resultados para Environmental-impact

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempts were made to quantify the environmental impacts of the basement walls of two commercial buildings in London. Four different retaining wall options were designed based on steel and concrete systems for each of the sites. It was considered that excavation would take place with the aid of a one or two anchors system. Evaluation of embodied energy (EE) and CO2 emissions for each of the wall designs and anchoring systems were compared. Results show that there are notable differences in EE between different wall designs. Using the averaged set of Embodied Energy Intensity (EEI) values, the use of recycled steel over virgin steel would reduce the EE of the wall significantly. The difference in anchor designs is relatively insignificant, and therefore the practicality of the design for the specific site should be the deciding factor for anchor types. Generally, the scale of environmental impacts due to constructions is large compared to other aspects in life as demonstrated with the comparisons to car emissions and household energy consumption. Copyright ASCE 2008.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to compare the life-cycle environmental impacts of changed production structures for two consumer goods (high-density polyethylene (HDPE) shopping bags and beds) in Jamaica. A scenario technique was used to construct three alternative production structures for each product; each scenario reflecting an increase in local production in Jamaica which depended on an increased supply of input materials which may be sourced: (1) externally from overseas suppliers, (2) from post-consumer recycling, and (3) locally on the island of Jamaica. These three constructed scenarios were then compared to the existing supply chain or reference scenarios of the products. The results showed that for both case products the recycling scenario was most preferable for localising production, resulting in the lowest environmental impact. This was because the production of raw materials accounted for the largest effect on total environmental impact. As such, the most immediate environmental improvements were realised by lowering the production of virgin materials. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plastics packaging is ubiquitous in the food industry, fulfilling a range of functions including a significant role in reducing food waste. The public perception of packaging, however, is dominated by end-of-life aspects, when the packaging becomes waste often found littering urban, rural and marine environments. A balanced analysis of the role of packaging demands that the whole lifecycle is examined, looking not only at the packaging itself but also at the product being packaged. This paper focuses on packaging in the meat and cheese industry, analysing the impact of films and bags. The functions of packaging are defined and the environmental impact of delivering these functions is assessed. The influence of packaging on levels of waste and energy consumption elsewhere in the system is examined, including the contentious issue of end-of-life for packaging. Strategies for minimizing the environmental impact of the packaging itself involve reduction in the amount of material used (thinner packaging), rather than emphasizing end-of-life issues. Currently, with polymer recycling not at a high level, evidence suggests that this strategy is justifiable. Biodegradable polymers may have some potential for improving environmental performance, but are still problematic. The conclusion is that although current packaging is in some ways wasteful and inefficient, the alternatives are even less desirable. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consumer goods manufacturers aiming to reduce the environmental impact associated with their products commonly pursue incremental change strategies, but more radical approaches may be required if we are to address the challenges of sustainable consumption. One strategy to realize step change reductions is to prepare a portfolio of innovations providing different levels of impact reduction in exchange for different levels of organizational resource commitment. In this research a tool is developed to support this strategy, starting with the assumption that through brainstorming or other eco-innovation approaches, a long-list of candidate innovations has been created. The tool assesses the potential greenhouse gas benefit of an innovative option against the difficulty of its implementation. A simple greenhouse gas benefit assessment method based on streamlined LCA was used to analyze impact reduction potential, and a novel measure of implementation difficulty was developed. The predictions of implementation difficulty were compared against expert opinion, and showed similar results indicating the measure can be used sensibly to predict implementation difficulty. The assessment of the environmental gain versus implementation difficulty is visualized in a matrix, showing the trade-offs of several options. The tool is deliberately simple with scalar measures of CO 2 emissions benefits and implementation difficulty so tool users must remain aware of other potential environmental burdens besides greenhouse gases (e.g. water, waste). In addition, although relative life cycle emissions benefits of an option may be low, the absolute impact of an option can be high and there may be other co-benefits, which could justify higher levels of implementation difficulty. Different types of consumer products (e.g. household, personal care, foods) have been evaluated using the tool. Initial trials of the tool within Unilever demonstrate that the tool facilitates rapid evaluation of low-carbon innovations. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terms such as Integrated Assessment and Sustainability Assessment are used to label 'new' approaches to impact assessment that are designed to direct planning and decision-making towards sustainable development (SD). Established assessment techniques, such as EIA and SEA, are also widely promoted as SD 'tools'. This paper presents the findings of a literature review undertaken to identify the features that are typically promoted for improving the SD-directedness of assessments. A framework is developed which reconciles the broad range of emerging approaches and tackles the inconsistent use of terminology. The framework comprises a three-dimensional space defined by the following axes: the comprehensiveness of the SD coverage; the degree of 'integration' of the techniques and themes; and the extent to which a strategic perspective is adopted. By applying the framework, assessment approaches can be positioned relative to one another, enabling comparison on the basis of substance rather than semantics. © 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protection of the environment against pollutants produced by aviation is of great concern in the 21st century. Among the multiplicity of proposed solutions, modifying flight profiles for existing aircraft is a promising approach. The aim is to deliver and understand the trade-off between environmental impact and operating costs. This work will illustrate the optimisation process of aircraft trajectories by minimising fuel consumption and flight time for the climb phase of an aircraft that belongs to A320 category. To achieve this purpose a new variant of a multi-objective Tabu Search optimiser was evolved and integrated within a computational framework, called GATAC, that simulates flight profiles based on altitude and speed. © 2013 Springer-Verlag.