17 resultados para Environmental analysis
em Cambridge University Engineering Department Publications Database
Resumo:
The objective of this study was to identify challenges in civil and environmental engineering that can potentially be solved using data sensing and analysis research. The challenges were recognized through extensive literature review in all disciplines of civil and environmental engineering. The literature review included journal articles, reports, expert interviews, and magazine articles. The challenges were ranked by comparing their impact on cost, time, quality, environment and safety. The result of this literature review includes challenges such as improving construction safety and productivity, improving roof safety, reducing building energy consumption, solving traffic congestion, managing groundwater, mapping and monitoring the underground, estimating sea conditions, and solving soil erosion problems. These challenges suggest areas where researchers can apply data sensing and analysis research.
Resumo:
Companies aiming to be 'sustainability leaders' in their sector and governments wanting to support their ambitions need a means to assess the changes required to make a significant difference in the impact of their whole sector. Previous work on scenario analysis/scenario planning demonstrates extensive developments and applications, but as yet few attempts to integrate the 'triple bottom line' concerns of sustainability into scenario planning exercises. This paper, therefore, presents a methodology for scenario analysis of large change to an entire sector. The approach includes calculation of a 'triple bottom line graphic equaliser' to allow exploration and evaluation of the trade-offs between economic, environmental and social impacts. The methodology is applied to the UK's clothing and textiles sector, and results from the study of the sector are summarised. In reflecting on the specific study, some suggestions are made about future application of a similar methodology, including a template of candidate solutions that may lead to significant reduction in impacts. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present in this paper a new multivariate probabilistic approach to Acoustic Pulse Recognition (APR) for tangible interface applications. This model uses Principle Component Analysis (PCA) in a probabilistic framework to classify tapping pulses with a high degree of variability. It was found that this model, achieves a higher robustness to pulse variability than simpler template matching methods, specifically when allowed to train on data containing high variability. © 2011 IEEE.
Resumo:
This paper reports some results from a major research project on the integration of environmental issues into design in the electrical and electronic industry. Product development practice and ecodesign methods were examined along with qualitative data from 19 manufacturers, using interviews and an action research methodology. A four-stage framework for ecodesign practice resulted: first, to make an environmental assessment from a life cycle viewpoint; then to communicate the analysis and collect feedback; thirdly to prioritize the environmental issues and finally to complete the design using relevant tools and methods. This 'ARPI' framework (analyse, report, prioritize, improve) applies to both strategic and operational levels. Initial testing of the framework in collaborating companies highlighted difficulties with communication with design teams; the role of 'ecodesign champions' is explained. Other challenges are the development of customized tools and the training of designers. The study concludes that the prioritization step is critical, as it simplifies and clarifies the tasks in design that take place after formulation of the specification. Copyright (C) 2000 John Wiley and Sons, Ltd. and ERP Environment.
Resumo:
One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.
Resumo:
Plastics packaging is ubiquitous in the food industry, fulfilling a range of functions including a significant role in reducing food waste. The public perception of packaging, however, is dominated by end-of-life aspects, when the packaging becomes waste often found littering urban, rural and marine environments. A balanced analysis of the role of packaging demands that the whole lifecycle is examined, looking not only at the packaging itself but also at the product being packaged. This paper focuses on packaging in the meat and cheese industry, analysing the impact of films and bags. The functions of packaging are defined and the environmental impact of delivering these functions is assessed. The influence of packaging on levels of waste and energy consumption elsewhere in the system is examined, including the contentious issue of end-of-life for packaging. Strategies for minimizing the environmental impact of the packaging itself involve reduction in the amount of material used (thinner packaging), rather than emphasizing end-of-life issues. Currently, with polymer recycling not at a high level, evidence suggests that this strategy is justifiable. Biodegradable polymers may have some potential for improving environmental performance, but are still problematic. The conclusion is that although current packaging is in some ways wasteful and inefficient, the alternatives are even less desirable. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Foundations of subsea infrastructure in deep water subjected to asymmetric environmental loads have underscored the importance of combined torsional and horizontal loading effects on the bearing capacity of rectangular shallow foundations. The purpose of this study is to investigate the undrained sliding and torsional bearing capacity of rectangular and square shallow foundations together with the interaction response under combined loading using three-dimensional finite element (3D-FE) analysis. Upper bound plastic limit analysis is employed to establish a reference value for horizontal and torsional bearing capacity, and an interaction relationship for the combined loading condition. Satisfactory agreement of plastic limit analysis (PLA) and 3D-FE results for ultimate capacity and interaction curves ensures that simple PLA solution could be used to evaluate the bearing capacity problem of foundation under combined sliding and torsion.
Resumo:
Contaminated land remediation has traditionally been viewed as sustainable practice because it reduces urban sprawl and mitigates risks to human being and the environment. However, in an emerging green and sustainable remediation (GSR) movement, remediation practitioners have increasingly recognized that remediation operations have their own environmental footprint. The GSR calls for sustainable behaviour in the remediation industry, for which a series of white papers and guidance documents have been published by various government agencies and professional organizations. However, the relationship between the adoption of such sustainable behaviour and its underlying driving forces has not been studied. This study aims to contribute to sustainability science by rendering a better understanding of what drives organizational behaviour in adopting sustainable practices. Factor analysis (FA) and structural equation modelling (SEM) were used to investigate the relationship between sustainable practices and key factors driving these behaviour changes in the remediation field. A conceptual model on sustainability in the environmental remediation industry was developed on the basis of stakeholder and institutional theories. The FA classified sustainability considerations, institutional promoting and impeding forces, and stakeholder's influence. Subsequently the SEM showed that institutional promoting forces had significant positive effects on adopting sustainability measures, and institutional impeding forces had significant negative effects. Stakeholder influences were found to have only marginal direct effect on the adoption of sustainability; however, they exert significant influence on institutional promoting forces, thus rendering high total effect (i.e. direct effect plus indirect effect) on the adoption of sustainability. This study suggests that sustainable remediation represents an advanced sustainable practice, which may only be fully endorsed by both internal and external stakeholders after its regulatory, normative and cognitive components are institutionalized. © 2014 Elsevier Ltd. All rights reserved.