10 resultados para Environmental Protection Areas

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Geographical Information Systems (GIS) and Digital Elevation Models (DEM) can be used to perform many geospatial and hydrological modelling including drainage and watershed delineation, flood prediction and physical development studies of urban and rural settlements. This paper explores the use of contour data and planimetric features extracted from topographic maps to derive digital elevation models (DEMs) for watershed delineation and flood impact analysis (for emergency preparedness) of part of Accra, Ghana in a GIS environment. In the study two categories of DEMs were developed with 5 m contour and planimetric topographic data; bare earth DEM and built environment DEM. These derived DEMs were used as terrain inputs for performing spatial analysis and obtaining derivative products. The generated DEMs were used to delineate drainage patterns and watershed of the study area using ArcGIS desktop and its ArcHydro extension tool from Environmental Systems Research Institute (ESRI). A vector-based approach was used to derive inundation areas at various flood levels. The DEM of built-up areas was used as inputs for determining properties which will be inundated in a flood event and subsequently generating flood inundation maps. The resulting inundation maps show that about 80% areas which have perennially experienced extensive flooding in the city falls within the predicted flood extent. This approach can therefore provide a simplified means of predicting the extent of inundation during flood events for emergency action especially in less developed economies where sophisticated technologies and expertise are hard to come by. © Springer Science + Business Media B.V. 2009.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to concerns about environmental protection and resource utilization, product lifecycle management for end-of-life (EOL) has received increasing attention in many industrial sectors including manufacturing, maintenance/repair, and recycling/refurbishing of the product. To support these functions, crucial issues are studied to realize a product recovery management system (PRMS), including: (1) an architecture design for EOL services, such as remanufacturing and recycling; (2) a product data model required for EOL activity based on international standards; and (3) an infrastructure for information acquisition and mapping to product lifecycle information. The presented works are illustrated via a realistic scenario. © 2008 Elsevier B.V. All rights reserved.