64 resultados para Engineer

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlling the growth of ZnO nanostructures for photovoltaic applications will ensure greater device efficiency and parameter control. This paper reports on methods to engineer the morphology and tailor the nanostructure growth direction through the hydrothermal synthesis method. Effective control is achieved through the use of a sputtered zinc layer together with modifications of the growth solution. These nanostructures have been developed with a view to incorporation into excitonic solar cells, and methods to improve surface stability using a fully aqueous synthesis method will be discussed. © by Oldenbourg Wissenschaftsverlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the steam turbines which provide most of our electricity to the jet engines which have shrunk our World, turbomachines undoubtedly play a major role in life today. Competition in the turbomachinery industry is fiercely strong [Wisler, 1998], hence good aerodynamic design is vital. However, with efficiency levels already close to their theoretical maxima, companies are increasingly looking to reduce costs and increase reliability through improved design practice. Computational Fluid Dynamics (CFD) can make a strong contribution to assisting this process as it has the potential to increase performance while reducing cost. The situation is, however, complicated by an ever decreasing number of engineers with sufficient design experience to reap the full benefits offered by CFD. With the large risks involved, novice designers of today are increasingly confined to refining old designs rather than gaining experience, like their forebears, through 'clean sheet' exercises. Hence it is desirable to capture the knowledge and experience of older designers, before it is lost, to assist the engineers of tomorrow. It is therefore the aim of this project to produce a design support tool which will not only store the appropriate CFD codes, but also provide a dynamic signpost (based on elicited knowledge and experience) to advise the engineer in their use. The signposting methodology developed for the aerospace industry [Clarkson and Hamilton, 1997] will provide the basic framework for the tool. This paper reviews current turbomachinery design practice (including an examination of the relevant CFD) in order to establish the important issues which a support tool must address. Current design support methodologies and their propriety are then reviewed, followed by a detailed description of the signposting concept. It then sets out a clear statement of the objectives for the research and the methods proposed to meet them. The paper concludes with a timetable of the work.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: