75 resultados para Energy-band theory of solids.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the electronic structure of defects in aSi:H, aGaAs and aSi3N4, emphasising in aSi:H the doping mechanism, the evidence that its dangling bond defect has a small electron-lattice coupling and a positive correlation energy, and possible atomic mechanisms for the Staebler-Wronski effect. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plastic collapse response of aluminium egg-box panels subjected to out-of-plane compression has been measured and modelled. It is observed that the collapse strength and energy absorption are sensitive to the level of in-plane constraint, with collapse dictated either by plastic buckling or by a travelling plastic knuckle mechanism. Drop weight tests have been performed at speeds of up to 6 m s-1, and an elevation in strength with impact velocity is noted. A 3D finite element shell model is needed in order to reproduce the observed behaviours. Additional calculations using an axisymmetric finite element model give the correct collapse modes but are less accurate than the more sophisticated 3D model. The finite element simulations suggest that the observed velocity dependence of strength is primarily due to strain-rate sensitivity of the aluminium sheet, with material inertia playing a negligible role. Finally, it is shown that the energy absorption capacity of the egg-box material is comparable to that of metallic foams. © 2003 Elsevier Ltd. All rights reserved.