29 resultados para End-to-side neurorrhaphy

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cost, narrow modulation bandwidth, un-cooled VCSELs can be utilized to directly modulate 64-QAM-encoded 11.25Gb/s signals for end-to-end real-time optical OFDM transmission over 25km SSMF IMDD systems with excellent performance robustness. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Organization for Standardization (ISO) method 5136 is widely used in industry and academia to determine the sound power radiated into a duct by fans and other flow devices. The method involves placing the device at the center of a long cylindrical duct with anechoic terminations at each end to eliminate reflections. A single off-axis microphone is used on the inlet and outlet sides that can theoretically capture the plane-wave mode amplitudes but this does not provide enough information to fully account for higher-order modes. In this study, the "two-port" source model is formulated to include higher-order modes and applied for the first three modes. This requires six independent surface pressure measurements on each side or "port." The resulting experimental set-up is much shorter than the ISO rig and does not require anechoic terminations. An array of six external loudspeaker sources is used to characterize the passive part of the two-port model and the set-up provides a framework to account for transmission of higher-order modes through a fan. The relative importance of the higher-order modes has been considered and their effect on inaccuracies when using the ISO method to find source sound power has been analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years we have developed and published research aimed at producing a meshing, geometry editing and simulation system capable of handling large scale, real world applications and implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the extension of this meshing system to include conjugate meshes for multi-physics simulations. Two contrasting applications are presented: export of a body-conformal mesh to drive a commercial, third-party simulation system; and direct use of the cut-Cartesian octree mesh with a single, integrated, close-coupled multi-physics simulation system. Copyright © 2010 by W.N.Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).