4 resultados para Employment of funds

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a detailed theoretical study of the dynamics of wavelength conversion using cross-gain and cross-phase modulation in semiconductor optical amplifiers (SOA's) involving a large signal, multisection rate equation model. Using this model, recently reported experimental results have been correctly predicted and the effects of electrical and optical pumping on the conversion speed, modulation index, and phase variation of the converted signal have been considered. The model predicts, in agreement with experimental data, that recovery rates as low as 12 ps are possible if signal and pump powers in excess of 14 dBm are used. It also indicates that conversion speeds up to 40 Gb/s may be achieved with less than 3 dB dynamic penalty. The employment of cross-phase modulation increases the speed allowing, for example, an improvement to 60 Gb/s with an excess loss penalty less than 1 dB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Like the Research Assessment Exercise (RAE) that preceded it, the UK government's proposed Research Excellence Framework (REF) is a means of allocating funding in higher education to support research. As with any method for the competitive allocation of funds it creates winners and losers and inevitably generates a lot of emotion among those rewarded or penalised. More specifically, the 'winners' tend to approve of the method of allocation and the 'losers' denigrate it as biased against their activities and generally unfair. An extraordinary press campaign has been consistently waged against research assessment and its methods by those involved in architectural education, which I will track over a decade and a half. What follows will question whether this campaign demonstrates the sophistication and superior judgment of those who have gone into print, or conversely whether its mixture of misinformation and disinformation reveals not just disenchantment and prejudice, but a naivety and a depth of ignorance about the fundamentals of research that is deeply damaging to the credibility of architecture as a research-based discipline. With the recent consultation process towards a new cycle of research assessment, the REF, getting under way, I aim to draw attention to the risk of repeating past mistakes. Copyright © Cambridge University Press 2010.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite many recent advances, the wide-spread adoption of vibrational energy harvesting has been limited by the low levels of generated output power and confined operational frequency band. Recent work by the authors on parametrically excited harvesters has demonstrated over an order of magnitude power improvement. This paper presents an investigation into the simultaneous employment of both direct and parametric resonance, as well as the incorporation of bi-stability, in an attempt to further improve the mechanical-to-electrical energy conversion efficiency by broadening the output power spectrum. Multiple direct and parametric resonant peaks from a multi-degree-of-freedom system were observed and an accumulative ∼10 Hz half-power bandwidth was recorded for the first 40 Hz. Real vibration data was also employed to analysis the rms power response effectiveness of the proposed system. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the arena of vibration energy harvesting, the key technical challenges continue to be low power density and narrow operational frequency bandwidth. While the convention has relied upon the activation of the fundamental mode of resonance through direct excitation, this article explores a new paradigm through the employment of parametric resonance. Unlike the former, oscillatory amplitude growth is not limited due to linear damping. Therefore, the power output can potentially build up to higher levels. Additionally, it is the onset of non-linearity that eventually limits parametric resonance; hence, this approach can also potentially broaden the operating frequency range. Theoretical prediction and numerical modelling have suggested an order higher in oscillatory amplitude growth. An experimental macro-sized electromagnetic prototype (practical volume of ∼1800 cm3) when driven into parametric resonance, has demonstrated around 50% increase in half power band and an order of magnitude higher peak power density normalised against input acceleration squared (293 μW cm-3 m-2 s4 with 171.5 mW at 0.57 m s-2) in contrast to the same prototype directly driven at fundamental resonance (36.5 μW cm-3 m-2 s4 with 27.75 mW at 0.65 m s-2). This figure suggests promising potentials while comparing with current state-of-the-art macro-sized counterparts, such as Perpetuum's PMG-17 (119 μW cm-3 m-2 s4). © The Author(s) 2013.