4 resultados para Empirical orthogonal function

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate how sensitive Gallager's codes are, when decoded by the sum-product algorithm, to the assumed noise level. We have found a remarkably simple function that fits the empirical results as a function of the actual noise level at both high and low noise levels. © 2004 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate how sensitive Gallager's codes are, when decoded by the sum-product algorithm, to the assumed noise level. We have found a remarkably simple function that fits the empirical results as a function of the actual noise level at both high and low noise levels. ©2003 Published by Elsevier Science B. V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives a new algorithm that performs independent component analysis (ICA) by optimizing the contrast function of the RADICAL algorithm. The core idea of the proposed optimization method is to combine the global search of a good initial condition with a gradient-descent algorithm. This new ICA algorithm performs faster than the RADICAL algorithm (based on Jacobi rotations) while still preserving, and even enhancing, the strong robustness properties that result from its contrast. © Springer-Verlag Berlin Heidelberg 2007.