3 resultados para Empirical Models

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of sound by turbulent boundary layer flow at low Mach number over a rough wall is investigated by applying the theoretical model which describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of the roughness noise radiated to far field. Empirical models for the source statistics are obtained by scaling smooth-wall data through increased skin friction velocity and boundary layer thickness for the rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet by four 1/2'' free-field condenser microphones. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibits encouraging agreement with the predicted spectra. Also, a phased microphone array is utilized to localize the sound source, and it confirms that the rough plates generate higher source strengthes in this frequency range. A parametric study illustrates that the roughness height and roughness density significantly affect the far-field radiated roughness noise with the roughness height having the dominant effect. The estimates of the roughness noise for a Boeing 757 sized aircraft wing show that in high frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels for the roughness noise are also observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Designers who want to manufacture a hardenable steel component need to select both the steel and its heat treatment. This project aims to develop a selection methodology for steels and process routes as an aid to designers. Three studies were conducted: - production of software to calculate the "equivalent diameter" and "equivalent Jominy distance" for simple shapes of a steel component; - prediction of semi-empirical Jominy curves (as-cooled) using CCT diagrams and process modelling methods, which were validated by experiment on plain carbon steels; - investigation of tempering of Jominy bars to explore the potential for semi-empirical models for the hardness after tempering.