3 resultados para Embree, Elihu, 1782-1820.
em Cambridge University Engineering Department Publications Database
Resumo:
High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-μm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 μm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.
Resumo:
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.
Resumo:
An online scheduling of the parameter ensuring in addition to closed loop stability was presented. Attention was given to saturated linear low-gain control laws. Null controllability of the considered linear systems was assumed. The family of low gain control laws achieved semiglobal stabilization.