20 resultados para Electrostatic Potential Dipole Legendre Induced Dyad Polarization
em Cambridge University Engineering Department Publications Database
Resumo:
Ferrocene-terminated self-assembled monolayers (Fc-SAMs) are one of the most studied molecular aggregates on metal electrodes. They are easy to fabricate and provide a stable and reproducible system to investigate the effect of the microenvironment on the electron transfer parameters. We propose a novel application for Fc-SAMs, the detection of molecular interactions, based on the modification of the SAM with target-specific receptors. Mixed SAMs were fabricated by coimmobilization on Au electrodes of thiolated alkane chains with three different head groups: hydroxy terminating head group, ferrocene head group, and a functional head group such as biotin. Upon binding, the intrinsic electric charge of the target (e.g., streptavidin) modifies the electrostatic potential at the plane of electron transfer, causing a shift in the formal potential E degrees '. The SAMs were characterized by AC voltammetry. The detection mechanism is confirmed by measurements of formal potential as a function of electrolyte pH.
Resumo:
This paper demonstrates and discusses novel "three dimensional" silicon based junction isolation/termination solutions suitable for high density ultra-low-resistance Lateral Super-Junction structures. The proposed designs are both compact and effective in safely distributing the electrostatic potential away from the active device area. The designs are based on the utilization of existing layers in the device fabrication line, hence resulting in no extra complexity or cost increase. The study/demonstration is done through extensive experimental measurements and numerical simulations. © 2012 IEEE.
Resumo:
Because of its fascinating electronic properties, graphene is expected to produce breakthroughs in many areas of nanoelectronics. For spintronics, its key advantage is the expected long spin lifetime, combined with its large electron velocity. In this article, we review recent theoretical and experimental results showing that graphene could be the long-awaited platform for spintronics. A critical parameter for both characterization and devices is the resistance of the contact between the electrodes and the graphene, which must be large enough to prevent quenching of the induced spin polarization but small enough to allow for the detection of this polarization. Spin diffusion lengths in the 100-μm range, much longer than those in conventional metals and semiconductors, have been observed. This could be a unique advantage for several concepts of spintronic devices, particularly for the implementation of complex architectures or logic circuits in which information is coded by pure spin currents. © Copyright 2012 Materials Research Society.
Resumo:
An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.
Resumo:
A novel pair of the E- and Z-isomeric 1R,4R-2-(4-heptyloxyphenyl)-benzylidene-p-menthan-3-ones has been prepared and the influence of distinctions in their molecular geometry on macroscopic properties of liquid crystal systems with the induced supra-molecular helical structure has been studied. The significantly lower helical twisting power of the chiral Z-isomer in comparison with that of E- one has been confirmed in the case of induced cholesteric systems based on 4-pentyl-4-cyanobiphenyl. The phase behavior and ferroelectric characteristics have been investigated for smectic-C* compositions based on the eutectic mixture of the homological 4-hexyloxyphenyl-4'-hexyloxy- and 4-hexyloxyphenyl-4'-octyloxybenzoates containing the novel isomeric chiral dopants. The spontaneous polarisation of the opposite signs induced by the isomeric chiral components has been revealed for the compositions studied. Distinctions in phase states, absolute values of the spontaneous polarization, smectic tilt angle and rotation viscosity of the systems obtained are discussed.
Resumo:
The first experimental demonstration of unique polarizatioon characteristics are reported. It is believed that the strong polarization effects reported result from the chirality imposed by the patterns of gammadions enhanced by plasmon effects due to the nanostructuring of the metal film in which they are cut. It is clear that such structures has the potential to yield many new and intriguing applications in optoelectronics and other areas.
Resumo:
Flutter and divergence instabilities have been advocated to be possible in elastic structures with Coulomb friction, but no direct experimental evidence has ever been provided. Moreover, the same types of instability can be induced by tangential follower forces, but these are commonly thought to be of extremely difficult, if not impossible, practical realization. Therefore, a clear experimental basis for flutter and divergence induced by friction or follower-loading is still lacking. This is provided for the first time in the present article, showing how a follower force of tangential type can be realized via Coulomb friction and how this, in full agreement with the theory, can induce a blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially growing motion (divergence). In addition, our results show the limits of a treatment based on the linearized equations, so that nonlinearities yield the initial blowing-up vibration of flutter to reach eventually a steady state. The presented results give full evidence to potential problems in the design of mechanical systems subject to friction, open a new perspective in the realization of follower-loading systems and of innovative structures exhibiting 'unusual' dynamical behaviors. © 2011 Elsevier Ltd.
Resumo:
Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.
Resumo:
Resonant-based vibration harvesters have conventionally relied upon accessing the fundamental mode of directly excited resonance to maximize the conversion efficiency of mechanical-to-electrical power transduction. This paper explores the use of parametric resonance, which unlike the former, the resonant-induced amplitude growth, is not limited by linear damping and wherein can potentially offer higher and broader nonlinear peaks. A numerical model has been constructed to demonstrate the potential improvements over the convention. Despite the promising potential, a damping-dependent initiation threshold amplitude has to be attained prior to accessing this alternative resonant phenomenon. Design approaches have been explored to passively reduce this initiation threshold. Furthermore, three representative MEMS designs were fabricated with both 25 and 10 μm thick device silicon. The devices include electrostatic cantilever-based harvesters, with and without the additional design modification to overcome initiation threshold amplitude. The optimum performance was recorded for the 25 μm thick threshold-aided MEMS prototype with device volume ∼0.147 mm3. When driven at 4.2 ms -2, this prototype demonstrated a peak power output of 10.7 nW at the fundamental mode of resonance and 156 nW at the principal parametric resonance, as well as a 23-fold decrease in initiation threshold over the purely parametric prototype. An approximate doubling of the half-power bandwidth was also observed for the parametrically excited scenario. © 2013 IOP Publishing Ltd.
Resumo:
This work investigates the feasibility of transducing molecular-recognition events into a measurable potentiometric signal. It is shown for the first time that biorecognition of acetylcholine (ACh) can be translated to conformational changes in the enzyme, acetylcholine-esterase (AChE), which in turn induces a measurable change in surface potential. Our results show that a highly sensitive detector for ACh can be obtained by the dilute assembly of AChE on a floating gate derived field effect transistor (FG-FET). A wide concentration range response is observed for ACh (10(-2)-10(-9)M) and for the inhibitor carbamylcholine CCh (10(-6)-10(-11)M). These enhanced sensitivities are modeled theoretically and explained by the combined response of the device to local pH changes and molecular dipole variations due to the enzyme-substrate recognition event.
Resumo:
We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 OSA.
Resumo:
We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © OSA 2012.