7 resultados para Electronic Effects

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ∼0.05 at 40 T. © 2014 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact Fluorescent Lamps (CFL) incorporating electronic ballasts are widely used in lighting. In many cases the ability to dim the lamp is a requirement Dimming can be achieved by varying the voltage supplied to the inverter or by changing the switching frequency of the inverter. The effect of dimming by both approaches on the power losses in the inverter is studied in this work. The lamp and associated inverter has been modeled in PSPICE, using a behavioral model for the CFL. Predicted losses are in good agreement with experimental data obtained from calorimetry. The model was then used to determine the distribution of losses within the inverter, enabling a comparison of the effects of the two dimming methods to be made. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact fluorescent lamps (CFLs) incorporating electronic ballasts are widely used in lighting. In many cases, the ability to dim the lamp is a requirement. Dimming can be achieved by varying the switching frequency of the inverter or by changing the voltage supplied to the inverter. The effect of dimming by both approaches on the power losses in the inverter is studied in this work. The lamp and associated inverter has been modeled in Pspice, using a behavioral model for the CFL. Predicted losses are in good agreement with experimental data obtained from calorimetry. After verification, the model was then used to determine the distribution of losses within the inverter, enabling a comparison of the effects of the two dimming methods to be made. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a methodology that enables fast and reasonably accurate prediction of the reliability of power electronic modules featuring IGBTs and p-i-n diodes, by taking into account thermo-mechanical failure mechanisms of the devices and their associated packaging. In brief, the proposed simulation framework performs two main tasks which are tightly linked together: (i) the generation of the power devices' transient thermal response for realistic long load cycles and (ii) the prediction of the power modules' lifetime based on the obtained temperature profiles. In doing so the first task employs compact, physics-based device models, power losses lookup tables and polynomials and combined material-failure and thermal modelling, while the second task uses advanced reliability tests for failure mode and time-to-failure estimation. The proposed technique is intended to be utilised as a design/optimisation tool for reliable power electronic converters, since it allows easy and fast investigation of the effects that changes in circuit topology or devices' characteristics and packaging have on the reliability of the employed power electronic modules. © 2012 IEEE.