10 resultados para Electromagnetics
em Cambridge University Engineering Department Publications Database
Resumo:
Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.
Resumo:
This paper reports the modeling and characterization of interdigitated rows of carbon nanotube electrodes used to address a liquid crystal media. Finite Element Method modeling of the nanotube arrays was performed to analyze the static electric Fields produced to Find suitable electrode geometry. A device was fabricated based on the simulation results and electro optics characteristics of the device are presented. This Finding has applications in the development of micron and submicron pixels, precise beem steering and nanotube based active back planes.
Resumo:
Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.