240 resultados para Electrochemical deposition

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnxSnyOz thin films (<100nm thickness), deposited by remote sputtering from a metal target using a confined argon plasma and oxygen gas jet near the sample, were investigated for their material properties. No visible deformation or curl was observed when deposited on plastic. Materials were confirmed to be amorphous and range between 5 and 10 at.% Sn concentration by x-ray diffraction, x-ray photoemission spectroscopy and energydispersive x-ray spectroscopy. Factors affecting the material composition over time are discussed. Depletion of the Sn as the target ages is suspected. © The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were grown at temperatures as low as 120degreesC by plasma-enhanced chemical vapor deposition. A systematic study of the temperature dependence of the growth rate and the structure of the as-grown nanotubes is presented using a C2H2/NH3 system and nickel as the catalyst. The activation energy for the growth rate was found to be 0.23 eV, much less than for thermal chemical vapor deposition (1.2-1.5 eV). This suggests growth occurs by surface diffusion of carbon on nickel. The result could allow direct growth of nanotubes onto low-temperature substrates like plastics, and facilitate the integration in sensitive nanoelectronic devices. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of hydrogenated amorphous silicon carbide (a-SiC:H) films from a mixture of silane, acetylene and hydrogen gas using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) process is reported. The variation in the deposition and film characteristics such as the deposition rate, optical band gap and IR absorption as a function of the hydrogen dilution is investigated. The deposition rate increases to a maximum value of about 250 Å min-1 at a hydrogen dilution ratio of about 20 (hydrogen flow (sccm)/acetylene + silane flow (sccm)) and decreases in response to a further increase in the hydrogen dilution. There is no strong dependence of the optical band gap on the hydrogen dilution within the dilution range investigated (10-60) and the optical band gap calculated from the E04 method varied marginally from about 2.85 to 3.17 eV. The room temperature photoluminescence (PL) peak energy and intensity showed a prominent shift to a maximum value of about 2.17 eV corresponding to maximum PL intensity at a moderate hydrogen dilution of about 30. The PL intensity showed a strong dependence on the hydrogen dilution variation.