38 resultados para Electric power generation
em Cambridge University Engineering Department Publications Database
Resumo:
A sensorless scheme is presented for a two-phase permanent-magnet linear machine targeted for use in marine wave-power generation. This is a field where system reliability is a key concern. The scheme is able to extract the effective inductance and back-emf of the machine's phases simultaneously from measurements of the current ripple present on the power electronic converter. These measurements can then be used to estimate position. An enhancement to the scheme in the presence of spatially-varying mutual inductance between phases allows more accurate and reliable tracking from indutance-based measurements than would otherwise be expected. This scheme is able to operate at any speed including, critically, when stationary. Experimental results show promise for the scheme, although some work to reduce the level of noise would be desirable. © 2013 IEEE.
Resumo:
Compared with the Doubly fed induction generators (DFIG), the brushless doubly fed induction generator (BDFIG) has a commercial potential for wind power generation due to its lower cost and higher reliability. In the most recent grid codes, wind generators are required to be capable of riding through low voltage faults. As a result of the negative sequence, induction generators response differently in asymmetrical voltage dips compared with the symmetrical dip. This paper gave a full behavior analysis of the BDFIG under different types of the asymmetrical fault and proposed a novel control strategy for the BDFIG to ride through asymmetrical low voltage dips without any extra hardware such as crowbars. The proposed control strategies are experimentally verified by a 250-kW BDFIG. © 2012 IEEE.
Resumo:
The design of a sustainable electricity generation and transmission system is based on the established science of anthropogenic climate change and the realization that depending on imported fossil-fuels is becoming a measure of energy insecurity of supply. A model is proposed which integrates generation fuel mix composition, assignment of plants and optimized power flow, using Portugal as a case study. The result of this co-optimized approach is an overall set of generator types/fuels which increases the diversity of Portuguese electricity supply, lowers its dependency on imported fuels by 14.62% and moves the country towards meeting its regional and international obligations of 31% energy from renewables by 2020 and a 27% reduction in greenhouse gas emissions by 2012, respectively. The quantity and composition of power generation at each bus is specified, with particular focus on quantifying the amount of distributed generation. Based on other works, the resultant, overall distributed capacity penetration of 19.02% of total installed generation is expected to yield positive network benefits. Thus, the model demonstrates that national energy policy and technical deployment can be linked through sustainability and, moreover, that the respective goals may be mutually achieved via holistic, integrated design. ©2009 IEEE.
Resumo:
Outlines the possibility for wave power generation at artificial islands by construction of a breakwater. Reviews the development of wave energy systems, and describes several wave generators, e.g. the Mauritius lagoon system, the Nodding Duck, the oscillating cylinder, the oscillating water column and the Lancaster Bag. Applications and costs are outlined. (C.J.U.)
Resumo:
Wind power generation as one of the most popular renewable energy applications is absorbing more and more attention all over the world. However, output power fluctuations of wind farm due to random variations of wind speed can cause network frequency and voltage flicker in power systems. The power quality consequently declines, particularly in an isolated power system such as the power system in a remote community or a small island. This paper proposes an application of superconducting magnetic energy storage (SMES) to minimize output fluctuations of an isolated power system with wind farm. The isolated power system is fed by a diesel generator and a wind generator consisting of a wind turbine and squirrel cage induction machine. The control strategy is detailed and the proposed system is evaluated by simulation in Matlab/Simulink.
Resumo:
Single-sensor maximum power point tracking algorithms for photovoltaic systems are presented. The algorithms have the features, characteristics and advantages of the widely used incremental conductance (INC) algorithm. However; unlike the INC algorithm which requires two sensors (the voltage sensor and the current sensor), the single-sensor algorithms are more desirable because they require only one sensor: the voltage sensor. The algorithms operate by maximising power at the DC-DC converter output, instead of the input. © 2013 The Institution of Engineering and Technology.
Resumo:
The work presents simplified242mAm fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. The performed calculations of power conversion efficiency under thermal and nuclear design constraints showed that 14 W/kg power density can be achieved, which corresponds to conversion efficiency of about 6%. Total power of the battery scales linearly with its surface area. 144 kW of electric power can be produced by a nuclear battery with an external radius of about 174 cm and total mass of less than 10300 kg. The mass of242m Am fuel for such a system is 3200 gram.