22 resultados para Elderly with dependence
em Cambridge University Engineering Department Publications Database
Resumo:
Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.
Resumo:
The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.
Resumo:
The effective thermal conductivity of steel alloy FeCrAlY (Fe-20 wt.% Cr-5 wt.% Al-2 wt.% Y-20 wt.%) foams with a range of pore sizes and porosities was measured between 300 and 800 K, under both vacuum and atmospheric conditions. The results show that the effective thermal conductivity increases rapidly as temperature is increased, particularly in the higher temperature range (500-800 K) where the transport of heat is dominated by thermal radiation. The effective conductivity at temperature 800 K can be three times higher than that at room temperature (300 K). Results obtained under vacuum conditions reveal that the effective conductivity increases with increasing pore size or decreasing porosity. The contribution of natural convection to heat conduction was found to be significant, with the effective thermal conductivity at ambient pressure twice the value of vacuum condition. The results also show that natural convection in metal foams is strongly dependent upon porosity. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.
Resumo:
We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho downward arrow/rho upward arrow approximately 5.5, in good agreement with thin film band structure calculations.
Resumo:
In many power converter applications, particularly those with high variable loads, such as traction and wind power, condition monitoring of the power semiconductor devices in the converter is considered desirable. Monitoring the device junction temperature in such converters is an essential part of this process. In this paper, a method for measuring the insulated gate bipolar transistor (IGBT) junction temperature using the collector voltage dV/dt at turn-OFF is outlined. A theoretical closed-form expression for the dV/dt at turn-OFF is derived, closely agreeing with experimental measurements. The role of dV/dt in dynamic avalanche in high-voltage IGBTs is also discussed. Finally, the implications of the temperature dependence of the dV/dt are discussed, including implementation of such a temperature measurement technique. © 2006 IEEE.
Resumo:
Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.
Resumo:
The tensile response of single crystal films passivated on two sides is analysed using climb enabled discrete dislocation plasticity. Plastic deformation is modelled through the motion of edge dislocations in an elastic solid with a lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The dislocation motion in the films is by glide-only or by climb-assisted glide whereas in the surface passivation layers dislocation motion occurs by glide-only and penalized by a friction stress. For realistic values of the friction stress, the size dependence of the flow strength of the oxidised films was mainly a geometrical effect resulting from the fact that the ratio of the oxide layer thickness to film thickness increases with decreasing film thickness. However, if the passivation layer was modelled as impenetrable, i.e. an infinite friction stress, the plastic hardening rate of the films increases with decreasing film thickness even for geometrically self-similar specimens. This size dependence is an intrinsic material size effect that occurs because the dislocation pile-up lengths become on the order of the film thickness. Counter-intuitively, the films have a higher flow strength when dislocation motion is driven by climb-assisted glide compared to the case when dislocation motion is glide-only. This occurs because dislocation climb breaks up the dislocation pile-ups that aid dislocations to penetrate the passivation layers. The results also show that the Bauschinger effect in passivated thin films is stronger when dislocation motion is climb-assisted compared to films wherein dislocation motion is by glide-only. © 2012 Elsevier Ltd.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
Y2-x Erx O3 thin films, with x varying between 0 and 0.72, have been successfully grown on crystalline silicon (c-Si) substrates by radio-frequency magnetron cosputtering of Y2 O 3 and Er2 O3 targets. As-deposited films are polycrystalline, showing the body-centered cubic structure of Y2 O3, and show only a slight lattice parameter contraction when x is increased, owing to the insertion of Er ions. All the films exhibit intense Er-related optical emission at room temperature both in the visible and infrared regions. By studying the optical properties for different excitation conditions and for different Er contents, all the mechanisms (i.e., cross relaxations, up-conversions, and energy transfers to impurities) responsible for the photoluminescence (PL) emission have been identified, and the existence of two different well-defined Er concentration regimes has been demonstrated. In the low concentration regime (x up to 0.05, Er-doped regime), the visible PL emission reaches its highest intensity, owing to the influence of up-conversions, thus giving the possibility of using Y2-x Er x O3 films as an up-converting layer in the rear of silicon solar cells. However, most of the excited Er ions populate the first two excited levels 4I11/2 and 4I13/2, and above a certain excitation flux a population inversion condition between the former and the latter is achieved, opening the route for the realization of amplifiers at 2.75 μm. Instead, in the high concentration regime (Er-compound regime), an increase in the nonradiative decay rates is observed, owing to the occurrence of cross relaxations or energy transfers to impurities. As a consequence, the PL emission at 1.54 μm becomes the most intense, thus determining possible applications for Y2-x Erx O 3 as an infrared emitting material. © 2009 American Institute of Physics.
Resumo:
Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is independent from its conditioning variables. In this paper, we relax this assumption by discovering the latent functions that specify the shape of a conditional copula given its conditioning variables We learn these functions by following a Bayesian approach based on sparse Gaussian processes with expectation propagation for scalable, approximate inference. Experiments on real-world datasets show that, when modeling all conditional dependencies, we obtain better estimates of the underlying copula of the data.
Resumo:
Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.
Resumo:
We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.