166 resultados para Elastic Modulus

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A constitutive equation is developed for geometrically-similar sharp indentation of a material capable of elastic, viscous, and plastic deformation. The equation is based on a series of elements consisting of a quadratic (reversible) spring, a quadratic (time-dependent, reversible) dashpot, and a quadratic (time-independent, irreversible) slider-essentially modifying a model for an elastic-perfectly plastic material by incorporating a creeping component. Load-displacement solutions to the constitutive equation are obtained for load-controlled indentation during constant loading-rate testing. A characteristic of the responses is the appearance of a forward-displacing "nose" during unloading of load-controlled systems (e.g., magnetic-coil-driven "nanoindentation" systems). Even in the absence of this nose, and the associated initial negative unloading tangent, load-displacement traces (and hence inferred modulus and hardness values) are significantly perturbed on the addition of the viscous component. The viscous-elastic-plastic (VEP) model shows promise for obtaining material properties (elastic modulus, hardness, time-dependence) of time-dependent materials during indentation experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Balloons are one example of pressurised, elastic, spherical shells. Whilst analytical solutions exist for the vibration of pressurised spheres, these models only incorporate constant tension in the membrane. For elastic shells, changes in curvature will result in restoring forces that are proportional to the elasticity in the membrane; hence the assumption of constant tension is not valid. This paper describes an analytical solution for the natural frequencies of an elastic spherical shell subject to internal pressure. When the membrane tension is set to zero, the results are shown to converge to the analytical solution for a spherical shell, and when the skin elasticity is neglected, the results converge to the constant-tension solution. This analytical solution is used to predict the natural frequencies of a small balloon, based on a value for the elastic modulus that is determined using biaxial tensile testing. These predictions are compared to experimental measurements of balloon vibrations using impact hammer testing, and good agreement is seen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element study has been performed on the effects of holes and rigid inclusions on the elastic modulus and yield strength of regular honeycombs under biaxial loading. The focus is on honeycombs that have already been weakened by a small degree of geometrical imperfection, such as a random distribution of fractured cell walls, as these imperfect honeycombs resemble commercially available metallic foams. Hashin-Shtrikman lower and upper bounds and self-consistent estimates of elastic moduli are derived to provide reference solutions to the finite element calculations. It is found that the strength of an imperfect honeycomb is relatively insensitive to the presence of holes and inclusions, consistent with recent experimental observations on commercial aluminum alloy foams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model has been developed to predict the erosive wear behaviour of elastomers under conditions of glancing impact by small hard particles. Previous work has shown the erosive wear mechanism of elastomers under these conditions to be similar in nature to that of abrasive wear by a sharp blade. The model presented here was developed from the model of Southern and Thomas for sliding abrasion, by combining their treatment of the growth of surface cracks with a model for particle impact in which the force - displacement relationship for an idealized flat-ended punch on a semi-infinite elastic solid was assumed. In this way an expression for the erosive wear rate was developed, and compared with experimental measurements of wear rate for natural rubber, styrene - butadiene rubber and a highly crosslinked polybutadiene rubber. Good qualitative agreement was found between the predictions of the model and the experimental measurements. The variation of erosion rate with impact velocity, impact angle, particle size, elastic modulus of the material, coefficient of friction and fatigue properties were all well accounted for. Quantitative agreement was less good, and the effects of erosive particle shape could not be accounted for. The reasons for these discrepancies are discussed. © 1992 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to improve drilling mud design to cater for specific well situations, a more comprehensive knowledge and understanding of filter cake failure is needed. This paper describes experimental techniques aimed at directly probing the mechanical properties of filter cakes, without having to take into account artefacts due to fluid flow in the substrate. The use of rheometers allows us to determine shear yield stress and dynamic shear modulii of cakes grown on filter paper. A new scraping technique measures the strength and moisture profiles of typical filter cakes with a 0.1 mm resolution. This technique also allows us to probe the adhesion between the filter cake and its rock substrate. In addition, œdometer drained consolidation and unloading of a filter cake give us compression parameters useful for Cam Clay modelling. These independent measurements give similar results as to the elastic modulus of different filter cakes, showing an order of magnitude difference between water based and oil based cakes. We find that these standard cakes behave predominantly as purely elastic materials, with a sharp transition into plastic flow, allowing for the determination of a well-defined yield stress. The effect ofsolids loading on a given type of mud is also studied.