8 resultados para Egoyan, Atom, 1960-

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different FIB-based sample preparation methods for atom probe analysis of transistors have been proposed and discussed. A special procedure, involving device deprocessing, has been used to analyze by APT a sub-30 nm transistor extracted from a SRAM device. The analysis provides three dimensional compositions of Ni-silicide contact, metal gate and high-k oxide of the transistor gate. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ni silicide formed at low temperature on Si nanowire has been analyzed by atom probe tomography (APT) thanks to a special technique for sample preparation. A method of preparation has been developed using the focused ion beam (FIB) for the APT analysis of nanowires (NWs). This method allow for the measurement of the radial distribution when a NW is cut, buried in a protective metal matrix, and finally mounted on the APT support post. This method was used for phosphorous doped Si NWs with or without a silicide shell, and allows obtaining the concentration and distribution of chemical elements in three-dimensions (3D) in the radial direction of the NWs. The distribution of atoms in the NWs has been measured including dopants and Au contamination. These measurements show that δ-Ni2Si phase is formed on Si NW, Au is found as cluster at the Ni/δ-Ni2Si interface and P is segregated at the δ-Ni2Si/ Si NW interface. The results obtained on NWs after silicidation were compared with the silicide on the Si substrate, showing that the same silicide phase δ-Ni2Si formed in both cases (NWs and substrate). © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In microelectronics, the increase in complexity and the reduction of devices dimensions make essential the development of new characterization tools and methodologies. Indeed advanced characterization methods with very high spatial resolution are needed to analyze the redistribution at the nanoscale in devices and interconnections. The atom probe tomography has become an essential analysis to study materials at the nanometer scale. This instrument is the only analytical microscope capable to produce 3D maps of the distribution of the chemical species with an atomic resolution inside a material. This technique has benefit from several instrumental improvements during last years. In particular, the use of laser for the analysis of semiconductors and insulating materials offers new perspectives for characterization. The capability of APT to map out elements at the atomic scale with high sensitivity in devices meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region. In this paper, several examples will show how APT can be used to characterize and understand materials and process for advanced metallization. The possibilities and performances of APT (chemical analysis of all the elements, atomic resolution, planes determination, crystallographic information...) will be described as well as some of its limitations (sample preparation, complex evaporation, detection limit, ...). The examples illustrate different aspect of metallization: dopant profiling and clustering, metallic impurities segregation on dislocation, silicide formation and alloying, high K/metal gate optimization, SiGe quantum dots, as well as analysis of transistors and nanowires. © 2013 Elsevier B.V. All rights reserved.