7 resultados para Effective medium theory

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using spectroscopic ellipsometry (SE), we have measured the optical properties of amorphous carbon (a-C) films ∼ 10-30 nm thick prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.% as measured by electron energy loss spectroscopy (EELS), and a range of optical gaps from 0.65 eV (20 at.% sp3 C) to 2.25 eV (76 at.% sp3 C) as measured by SE. SE data from 1.5 to 5 eV have been analyzed by applying the most widely used effective medium theory (EMT) namely that of Bruggeman with isotropic screening, assuming a model of the material as a composite with sp2 C and sp3 C components. Although the atomic fractions of sp3 C deduced by SE with the Bruggeman EMT correlate monotonically with those obtained by EELS, the SE results range from 10 to 25 at.% higher. The possible origins of this discrepancy are discussed within the framework of an optical composite. Improved agreement between SE and EELS is obtained by employing a simple form for the EMT, in which the effective dielectric function is determined as a volume-fraction-weighted average of the dielectric functions of the two components. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using spcctroscopic ellipsometry (SE), we have measured the optical properties and optical gaps of a series of amorphous carbon (a-C) films ∼ 100-300 Å thick, prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.%, as measured by electron energy loss spectroscopy (EELS). The Taue optical gaps of the a-C films increase monotonically from 0.65 eV for 20 at.% sp3 C to 2.25 eV for 76 at.% sp3 C. Spectra in the ellipsometric angles (1.5-5 eV) have been analyzed using different effective medium theories (EMTs) applying a simplified optical model for the dielectric function of a-C, assuming a composite material with sp2 C and sp3 C components. The most widely used EMT, namely that of Bruggeman (with three-dimensionally isotropic screening), yields atomic fractions of sp3 C that correlate monotonically with those obtained from EELS. The results of the SE analysis, however, range from 10 to 25 at.% higher than those from EELS. In fact, we have found that the volume percent sp3 C from SE using the Bruggeman EMT shows good numerical agreement with the atomic percent sp3 C from EELS. The SE-EELS discrepancy has been reduced by using an optical model in which the dielectric function of the a-C is determined as a volume-fraction-weighted average of the dielectric functions of the sp2 C and sp3 C components. © 1998 Elsevier Science S.A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermally treated silicon rich oxides (SRO) used as starting material for the fabrication of silicon nanodots represent the basis of tunable bandgap nanostructured materials for optoelectronic and photonic applications. The optical modelization of such materials is of great interest, as it allows the simulation of reflectance and transmittance (R&T) spectra, which is a powerful non destructive tool in the determination of phase modifications (clustering, precipitation of new phases, crystallization) upon thermal treatments. In this paper, we study the optical properties of a variety of as-deposited and furnace annealed SRO materials. The different phases are treated by means of the effective medium approximation. Upon annealing at low temperature, R&T spectra show the precipitation of amorphous silicon nanoparticles, while the crystallization occurring at temperatures higher than 1000 °C is also clearly identified, in agreement with structural results. The existing literature on the optical properties of the silicon nanocrystals is reviewed, with attention on the specificity of the compositional and structural characteristics of the involved material. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, many industrial firms have been able to use roadmapping as an effective process methodology for projecting future technology and for coordinating technology planning and strategy. Firms potentially realize a number of benefits in deploying technology roadmapping (TRM) processes. Roadmaps provide information identifying which new technologies will meet firms' future product demands, allowing companies to leverage R&D investments through choosing appropriately out of a range of alternative technologies. Moreover, the roadmapping process serves an important communication tool helping to bring about consensus among roadmap developers, as well as between participants brought in during the development process, who may communicate their understanding of shared corporate goals through the roadmap. However, there are few conceptual accounts or case studies have made the argument that roadmapping processes may be used effectively as communication tools. This paper, therefore, seeks to elaborate a theoretical foundation for identifying the factors that must be considered in setting up a roadmap and for analyzing the effect of these factors on technology roadmap credibility as perceived by its users. Based on the survey results of 120 different R&D units, this empirical study found that firms need to explore further how they can enable frequent interactions between the TRM development team and TRM participants. A high level of interaction will improve the credibility of a TRM, with communication channels selected by the organization also positively affecting TRM credibility. © 2011 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a new product development (NPD) model that aims to improve the effectiveness of innovative NPD in the medical devices. By adopting open innovation theory and applying an in-depth investigation methodology, this paper proposes a knowledge cluster that improves the integration of interdisciplinary human resources and enhances the acquirement of innovative technologies. A knowledge cluster approach helps gather, organise, synthesise, and accumulate knowledge in order to become the impetus for innovation. Although enterprises are no longer the principals of research and development, they should still be capable of integrating professional physicians, external groups, and individuals through the knowledge cluster platform. However, in order to support an effective NPD model, enterprises should provide adequate incentives and trust to external individuals or groups willing to contribute their expertise and knowledge to this knowledge cluster platform. Copyright © 2013 Inderscience Enterprises Ltd.