30 resultados para ELECTRON-WAVE-GUIDE
em Cambridge University Engineering Department Publications Database
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © OSA 2012.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.
Resumo:
Hydrogenated amorphous carbon nitride (a-C:N:H) has been synthesized using a high plasma density electron cyclotron wave resonance (ECWR) technique using N2 and C2H2 as source gases, at different ratios and a fixed ion energy (80 eV). The composition, structure and bonding state of the films were investigated and related to their optical and electrical properties. The nitrogen content in the film rises rapidly until the N2/C2H2 gas ratio reaches 2 and then increases more gradually, while the deposition rate decreases steeply, placing an upper limit for the nitrogen incorporation at 30 at%. For nitrogen contents above 20 at%, the band gap and sp3-bonded carbon fraction decrease from 1.7 to 1.1 eV and approximately 65 to 40%, respectively. Films with higher nitrogen content are less dense than the original hydrogenated tetrahedral amorphous carbon (ta-C:H) film but, because they have a relatively high band gap (1.1 eV), high resistivity (109 Ω cm) and moderate sp3-bonded carbon fraction (40%), they should be classed as polymeric in nature.