38 resultados para Dynamic Nuclear Polarization
em Cambridge University Engineering Department Publications Database
Resumo:
DNA methylation directed by 24-nucleotide small RNAs involves the small RNA-binding protein ARGONAUTE4 (AGO4), and it was previously shown that AGO4 localizes to nucleolus-adjacent Cajal bodies, sites of snRNP complex maturation. Here we demonstrate that AGO4 also localizes to a second class of nuclear bodies, called AB-bodies, which are found immediately adjacent to condensed 45S ribosomal DNA (rDNA) sequences. AB-bodies also contain other proteins involved in RNA-directed DNA methylation including NRPD1b (a subunit of the RNA Polymerase IV complex, RNA PolIV), NRPD2 (a second subunit of this complex), and the DNA methyltransferase DRM2. These two classes of AGO4 bodies are structurally independent--disruption of one class does not affect the other--suggesting a dynamic regulation of AGO4 within two distinct nuclear compartments in Arabidopsis. Abolishing Cajal body formation in a coilin mutant reduced overall AGO4 protein levels, and coilin dicer-like3 double mutants showed a small decrease in DNA methylation beyond that seen in dicer-like3 single mutants, suggesting that Cajal bodies are required for a fully functioning DNA methylation system in Arabidopsis.
Resumo:
Swaging is a cold working process involving plastic deformation of the work piece to change its shape. A swaged joint is a connection between two components whereby a swaging tool induces plastic deformation of the components at their junction to effectively bind them together. This is commonly used when welding or other standard joining techniques are not viable. Swaged joints can be found for example, in nuclear fuel assemblies to connect the edges of thin rectangular plates to a supporting structure or frame. The aim of this work is to find a model to describe the vibrational behaviour of a swaged joint and to estimate its strength in resisting a longitudinally applied load. The finite element method and various experimental rigs were used in order to find relationships between the natural frequencies of the plate, the joint stiffness and the force required to shift the plate against the restraining action of the swage connection. It is found that a swaged joint is dynamically equivalent to a simple support with the rotation elastically restrained and a small stiffness is enough to resist an important load. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.
Resumo:
The vibration behavior of piled foundations is an important consideration in fields such as earthquake engineering, construction, machine-foundation design, offshore structures, nuclear energy, and road and rail development. This paper presents a review of the past 40 years' literature on modeling the frequency-dependent behavior of pile foundations. Beginning with the earliest model of a single pile, adapted from those for embedded footings, it charts the development of the four pile-modeling techniques: the "dynamic Winkler-foundation" approach that uses springs to represent the effect of the soil; elasticcontinuum-type formulations involving the analytical solutions for displacements due to a subsurface disk, cylinder, or other element; boundary element methods; and dynamic finite-element formulations with special nonreflecting boundaries. The modeling of pile groups involves accounting for pile-soil-pile interactions, and four such methods exist: interaction factors; complete pile models; the equivalent pier method; and periodic structure theory. Approaches for validating pile models are also explored. Copyright © 2013 by ASME.
Resumo:
When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently.