27 resultados para Dynamic Models
em Cambridge University Engineering Department Publications Database
Resumo:
The vibration behavior of piled foundations is an important consideration in fields such as earthquake engineering, construction, machine-foundation design, offshore structures, nuclear energy, and road and rail development. This paper presents a review of the past 40 years' literature on modeling the frequency-dependent behavior of pile foundations. Beginning with the earliest model of a single pile, adapted from those for embedded footings, it charts the development of the four pile-modeling techniques: the "dynamic Winkler-foundation" approach that uses springs to represent the effect of the soil; elasticcontinuum-type formulations involving the analytical solutions for displacements due to a subsurface disk, cylinder, or other element; boundary element methods; and dynamic finite-element formulations with special nonreflecting boundaries. The modeling of pile groups involves accounting for pile-soil-pile interactions, and four such methods exist: interaction factors; complete pile models; the equivalent pier method; and periodic structure theory. Approaches for validating pile models are also explored. Copyright © 2013 by ASME.
Resumo:
This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.
Resumo:
In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.
Resumo:
The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.
Resumo:
The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.
Resumo:
The events that determine the dynamics of proliferation, spread and distribution of microbial pathogens within their hosts are surprisingly heterogeneous and poorly understood. We contend that understanding these phenomena at a sophisticated level with the help of mathematical models is a prerequisite for the development of truly novel, targeted preventative measures and drug regimes. We describe here recent studies of Salmonella enterica infections in mice which suggest that bacteria resist the antimicrobial environment inside host cells and spread to new sites, where infection foci develop, and thus avoid local escalation of the adaptive immune response. We further describe implications for our understanding of the pathogenic mechanism inside the host.