22 resultados para Domain-specific analysis

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a new approach to model the forces on a tread block for a free-rolling tyre in contact with a rough road. A theoretical analysis based on realistic tread mechanical properties and road roughness is presented, indicating partial contact between a tread block and a rough road. Hence an asperity-scale indentation model is developed using a semi-empirical formulation, taking into account both the rubber viscoelasticity and the tread block geometry. The model aims to capture the essential details of the contact at the simplest level, to make it suitable as part of a time-domain dynamic analysis of the coupled tyre-road system. The indentation model is found to have a good correlation with the finite element (FE) predictions and is validated against experimental results using a rolling contact rig. When coupled to a deformed tyre belt profile, the indentation model predicts normal and tangential force histories inside the tyre contact patch that show good agreement with FE predictions. © 2012 Elsevier B.V..

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.