14 resultados para Distribution system - Power quality
em Cambridge University Engineering Department Publications Database
Resumo:
This paper demonstrates a novel digital radio distribution system able to transmit not only over optical fibres and coaxial cables but also over twisted pair cables. The digitised RF signal is compressed for maximum transmission efficiency in a way that allows for integral self-learning algorithms to be introduced for multi-service applications. © 2013 IEEE.
Resumo:
Wind power generation as one of the most popular renewable energy applications is absorbing more and more attention all over the world. However, output power fluctuations of wind farm due to random variations of wind speed can cause network frequency and voltage flicker in power systems. The power quality consequently declines, particularly in an isolated power system such as the power system in a remote community or a small island. This paper proposes an application of superconducting magnetic energy storage (SMES) to minimize output fluctuations of an isolated power system with wind farm. The isolated power system is fed by a diesel generator and a wind generator consisting of a wind turbine and squirrel cage induction machine. The control strategy is detailed and the proposed system is evaluated by simulation in Matlab/Simulink.
Resumo:
We report a fibre-optic wireless distribution system, which allows antenna-remoting of a dual-service IEEE 802.11b/g WLAN operating at 2.4GHz up to 700m over low-bandwidth 62.5/125μm MMF using highly linear uncooled directly modulated laser diodes. © 2004 Optical Society of America.
Resumo:
We report the operation of a gigahertz clocked quantum key distribution system, with two classical data communication channels using coarse wavelength division multiplexing over a record fibre distance of 80km. © 2012 OSA.
Resumo:
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.
Resumo:
We report the operation of a gigahertz clocked quantum key distribution system featuring high composable and quantifiable security while maintaining more than 1 Mbit/s secure key rate over a 50 km quantum channel. © OSA 2013.
Resumo:
We report the operation of a gigahertz clocked quantum key distribution system, with two classical data communication channels using coarse wavelength division multiplexing over a record fibre distance of 80km. © OSA 2012.
Resumo:
Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m × 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m 8m and 10m × 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system. © 2012 IEEE.
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m x 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m x 8m and 10m x 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system.
Resumo:
A superconducting fault current limiter (SFCL) in series with a downstream circuit breaker could provide a viable solution to controlling fault current levels in electrical distribution networks. In order to integrate the SFCL into power grids, we need a way to conveniently predict the performance of the SFCL in a given scenario. In this paper, short circuit analysis based on the electromagnetic transient program was used to investigate the operational behavior of the SFCL installed in an electrical distribution grid. System studies show that the SFCL can not only limit the fault current to an acceptable value, but also mitigate the voltage sag. The transient recovery voltage (TRV) could be remarkably damped and improved by the presence of the SFCL after the circuit breaker is opened to clear the fault. © 2007 British Crown Copyright.