12 resultados para Distribution in coals
em Cambridge University Engineering Department Publications Database
Spin-dependent momentum distribution in iron studied with circularly polarized synchrotron radiation
Resumo:
This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.
Resumo:
In this paper, we extract density of localized tail states from measurements of low temperature conductance in amorphous oxide transistors. At low temperatures, trap-limited conduction prevails, allowing extraction of the trapped carrier distribution with energy. Using a test device with a-InGaZnO channel layer, the extracted tail state energy and density at the conduction band minima are 20 meV and 2 × 10 19 cm -3 eV -1, respectively, which are consistent with values reported in the literature. Also, the field-effect mobility as a function of temperature from 77 K to 300 K is retrieved for different gate voltages, yielding the activation energy and the percolation threshold. © 2012 American Institute of Physics.
Resumo:
This paper reports on an extensive analysis of the electroluminescence characteristics of InGaN-based LEDs with color-coded structure, i.e., with a triple quantum well structure in which each quantum well has a different indium content. The analysis is based on combined electroluminescence measurements and two-dimensional simulations, carried out at different current and temperature levels. Results indicate that (i) the efficiency of each of the quantum wells strongly depends on device operating conditions (current and temperature); (ii) at low current and temperature levels, only the quantum well closer to the p-side has a significant emission; (iii) emission from the other quantum wells is favored at high current levels. The role of carrier injection, hole mobility, carrier density and non-radiative recombination in determining the relative intensity of the quantum wells is discussed in the text. © 2013 The Japan Society of Applied Physics.
Resumo:
Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.
Resumo:
The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics. We argue that "dilution", as indicated by the deviation of the oxygen concentration from that of air, is a more appropriate parameter than EGR rate in the context of NOX control, especially for diesel engines. Experimental results are presented for the EGR distribution in a current production light duty 4-cylinder diesel engine in which significant differences were found in the proportion of the recirculated gas that reached each cylinder. Even the individual inlet runners of the cylinders exhibited very different dilution rates - differences of nearly 50% were observed at some conditions. An application of such data may be in the improvement of calibration and validation of CFD and other modelling techniques. Copyright © 2014 SAE International.