103 resultados para Diode-pumped

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diode-pumped, solid-state (DPSS) lasers with multiwavelength capability have become an industrial reality in recent years. Multiwavelength capability allows DPSS lasers to perform operations such as micromachining in a variety of engineering materials such as ceramics, metals and polymers. A series of experiments was performed to investigate how shielding gas environments and gas pressure affect the ability to cut and machine chromium-rich die steels. Results from this study reveal that traditional plasma-controlling gases have a detrimental e�ffect on the surface morphology of micromachined components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300-1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow (Δλ=0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the fabrication and operation of a carbon nanotube (CNT) based Schottky diode by using a Pd contact (high-work-function metal) and an Al contact (low-work-function metal) at the two ends of a single-wall CNT. We show that it is possible to tune the rectification current-voltage (I-V) characteristics of the CNT through the use of a back gate. In contrast to standard back gate field-effect transistors (FET) using same-metal source drain contacts, the asymmetrically contacted CNT operates as a directionally dependent CNT FET when gated. While measuring at source-drain reverse bias, the device displays semiconducting characteristics whereas at forward bias, the device is nonsemiconducting. © 2005 American Institute of Physics.