15 resultados para Digital elevation model (DEM)
em Cambridge University Engineering Department Publications Database
Resumo:
Geographical Information Systems (GIS) and Digital Elevation Models (DEM) can be used to perform many geospatial and hydrological modelling including drainage and watershed delineation, flood prediction and physical development studies of urban and rural settlements. This paper explores the use of contour data and planimetric features extracted from topographic maps to derive digital elevation models (DEMs) for watershed delineation and flood impact analysis (for emergency preparedness) of part of Accra, Ghana in a GIS environment. In the study two categories of DEMs were developed with 5 m contour and planimetric topographic data; bare earth DEM and built environment DEM. These derived DEMs were used as terrain inputs for performing spatial analysis and obtaining derivative products. The generated DEMs were used to delineate drainage patterns and watershed of the study area using ArcGIS desktop and its ArcHydro extension tool from Environmental Systems Research Institute (ESRI). A vector-based approach was used to derive inundation areas at various flood levels. The DEM of built-up areas was used as inputs for determining properties which will be inundated in a flood event and subsequently generating flood inundation maps. The resulting inundation maps show that about 80% areas which have perennially experienced extensive flooding in the city falls within the predicted flood extent. This approach can therefore provide a simplified means of predicting the extent of inundation during flood events for emergency action especially in less developed economies where sophisticated technologies and expertise are hard to come by. © 2009 Springer Netherlands.
Resumo:
Geographical Information Systems (GIS) and Digital Elevation Models (DEM) can be used to perform many geospatial and hydrological modelling including drainage and watershed delineation, flood prediction and physical development studies of urban and rural settlements. This paper explores the use of contour data and planimetric features extracted from topographic maps to derive digital elevation models (DEMs) for watershed delineation and flood impact analysis (for emergency preparedness) of part of Accra, Ghana in a GIS environment. In the study two categories of DEMs were developed with 5 m contour and planimetric topographic data; bare earth DEM and built environment DEM. These derived DEMs were used as terrain inputs for performing spatial analysis and obtaining derivative products. The generated DEMs were used to delineate drainage patterns and watershed of the study area using ArcGIS desktop and its ArcHydro extension tool from Environmental Systems Research Institute (ESRI). A vector-based approach was used to derive inundation areas at various flood levels. The DEM of built-up areas was used as inputs for determining properties which will be inundated in a flood event and subsequently generating flood inundation maps. The resulting inundation maps show that about 80% areas which have perennially experienced extensive flooding in the city falls within the predicted flood extent. This approach can therefore provide a simplified means of predicting the extent of inundation during flood events for emergency action especially in less developed economies where sophisticated technologies and expertise are hard to come by. © Springer Science + Business Media B.V. 2009.
Resumo:
A model of the auditory periphery assembled from analog network submodels of all the relevant anatomical structures is described. There is bidirectional coupling between networks representing the outer ear, middle ear and cochlea. A simple voltage source representation of the outer hair cells provides level-dependent basilar membrane curves. The networks are translated into efficient computational modules by means of wave digital filtering. A feedback unit regulates the average firing rate at the output of an inner hair cell module via a simplified modelling of the dynamics of the descending paths to the peripheral ear. This leads to a digital model of the entire auditory periphery with applications to both speech and hearing research.
Resumo:
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.
Resumo:
A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.
Resumo:
The Asian tsunami of 26 December 2004 killed over 220 000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new tsunami resistant design developed in the USA and now built in Sri Lanka Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.
Resumo:
In this paper, we propose a watermarking algorithm in the complex wavelet domain. We then model watermarking as a communication process and show that the complex wavelet domain has relatively high capacity and is a potentially good domain for watermarking. Finally, a technique for registering geometrically distorted images, which is based on motion estimation in the wavelet domain, is described. The registration process can assist watermark detection in a watermarked image attacked by Stirmark, for example.
Resumo:
Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.
Resumo:
Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.