8 resultados para Differential thermal analysis measurement
em Cambridge University Engineering Department Publications Database
Resumo:
Upon heating, hydrated magnesium carbonates (HMCs) undergo a continuous sequence of decomposition reactions. This study aims to investigate the thermal decomposition of various commercially produced HMCs classified as light and heavy, highlight their differences, and provide an insight into their compositions in accordance with the results obtained from thermal analysis and microstructure studies. An understanding of the chemical compositions and microstructures, and a better knowledge of the reactions that take place during the decomposition of HMCs were achieved through the use of SEM, XRD, and TG/differential thermal analysis (DTA). The quantification of their CO 2 contents was provided by TG and dissolving the samples in HCl acid. Results show that variations exist within the microstructure and decomposition patterns of the two groups of HMCs, which do not exactly fit into the fixed stoichiometry of the known HMCs in the MgO-CO2-H2O system. The occurrence of an exothermic DTA peak was only observed for the heavy HMCs, which was attributed to their high CO2 contents and the relatively delayed decomposition pattern. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.
Resumo:
Successful product development, especially in motorsport, increasingly depends not just on the ability to simulate aero-thermal behavior of complex geometrical configurations, but also the ability to automate these simulations within a workflow and perform as many simulations as possible within constrained time frames. The core of these aero-thermal simulations - and usually the main bottleneck - is generating the computational mesh. This paper describes recent work aimed at developing a mesh generator which can reliably produce meshes for geometries of essentially arbitrary complexity in an automated manner and fast enough to keep up with the pace of an engineering development program. Our goal is to be able to script the mesh generation within an automated workflow - and forget it. © 2011 SAE International.
Resumo:
A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.