16 resultados para Differentiable Algebras
em Cambridge University Engineering Department Publications Database
Resumo:
We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.
Resumo:
Studies of human decision making emerge from two dominant traditions: learning theorists [1-3] study choices in which options are evaluated on the basis of experience, whereas behavioral economists and financial decision theorists study choices in which the key decision variables are explicitly stated. Growing behavioral evidence suggests that valuation based on these different classes of information involves separable mechanisms [4-8], but the relevant neuronal substrates are unknown. This is important for understanding the all-too-common situation in which choices must be made between alternatives that involve one or another kind of information. We studied behavior and brain activity while subjects made decisions between risky financial options, in which the associated utilities were either learned or explicitly described. We show a characteristic effect in subjects' behavior when comparing information acquired from experience with that acquired from description, suggesting that these kinds of information are treated differently. This behavioral effect was reflected neurally, and we show differential sensitivity to learned and described value and risk in brain regions commonly associated with reward processing. Our data indicate that, during decision making under risk, both behavior and the neural encoding of key decision variables are strongly influenced by the manner in which value information is presented.