14 resultados para Dietary energy levels

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented for predicting the variance of the energy levels in a built-up system to accompany the mean values predicted by SEA. Closed form expressions for the variance are obtained in terms of the standard SEA parameters and an additional set of parameters αk that describe the nature of the power input to each subsystem k, and αks that describe the nature of the coupling between subsystems k and s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe studies of new nanostructured materials consisting of carbon nanotubes wrapped in sequential coatings of two different semiconducting polymers, namely, poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT). Using absorption spectroscopy and steady-state and ultrafast photoluminescence measurements, we demonstrate the role of the different layer structures in controlling energy levels and charge transfer in both solution and film samples. By varying the simple solution processing steps, we can control the ordering and proportions of the wrapping polymers in the solid state. The resulting novel coaxial structures open up a variety of new applications for nanotube blends and are particularly promising for implementation into organic photovoltaic devices. The carbon nanotube template can also be used to optimize both the electronic properties and morphology of polymer composites in a much more controlled fashion than achieved previously, offering a route to producing a new generation of polymer nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure, formation energy, and energy levels of the various oxygen vacancies in Ta2O5 have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications. © 2014 AIP Publishing LLC.