35 resultados para Dielectric Behavior
em Cambridge University Engineering Department Publications Database
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.
Resumo:
Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
Resumo:
Au nanoparticles stabilized by poly(methyl methacrylate) (PMMA) were used as a catalyst to grow vertically aligned ZnO nanowires (NWs). The density of ZnO NWs with very uniform diameter was controlled by changing the concentration of Au-PMMA nanoparticles (NPs). The density was in direct proportion to the concentration of Au-PMMA NPs. Furthermore, the growth process of ZnO NWs using Au-PMMA NPs was systematically investigated through comparison with that using Au thin film as a catalyst. Au-PMMA NPs induced polyhedral-shaped bases of ZnO NWs separated from each other, while Au thin film formed a continuous network of bases of ZnO NWs. This approach provides a facile and cost-effective catalyst density control method, allowing us to grow high-quality vertically aligned ZnO NWs suitable for many viable applications.
Resumo:
Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.
Resumo:
In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.
Resumo:
A power LDMOS on partial silicon on insulator (PSOI) with a variable low-κ dielectric (VLKD) buried layer and a buried p (BP) layer is proposed (VLKD BPSOI). At a low κ value, the electric field strength in the buried dielectric (EI) is enhanced, and a Si window makes the substrate share the vertical voltage drop, leading to a high vertical breakdown voltage (BV). Moreover, three interface field peaks are introduced by the BP, the Si window, and the VLKD, which modulate the fields in the SOI layer, the VLKD layer, and the substrate; consequently, a high BV is obtained. Furthermore, the BP reduces the specific on-resistance (Ron), and the Si window alleviates the self-heating effect (SHE). The BV for VLKD BPSOI is enhanced by 34.5%, and Ron is decreased by 26.6%, compared with those for the conventional PSOI, and VLKD BPSOI also maintains a low SHE. © 2006 IEEE.
Resumo:
The subthreshold slope, transconductance, threshold voltage, and hysteresis of a carbon nanotube field-effect transistor (CNT FET) were examined as its configuration was changed from bottom-gate exposed channel, bottom-gate covered channel to top-gate FET. An individual single wall CNT was grown by chemical vapor deposition and its gate configuration was changed while determining its transistor characteristics to ensure that the measurements were not a function of different chirality or diameter CNTs. The bottom-gate exposed CNT FET utilized 900 nm SiO2 as the gate insulator. This CNT FET was then covered with TiO2 to form the bottom-gate covered channel CNT FET. Finally, the top-gate CNT FET was fabricated and the device utilized TiO 2 (K ∼ 80, equivalent oxide thickness=0.25 nm) as the gate insulator. Of the three configurations investigated, the top-gate device exhibited best subthreshold slope (67-70 mV/dec), highest transconductance (1.3 μS), and negligible hysteresis in terms of threshold voltage shift. © 2006 American Institute of Physics.