11 resultados para Design Methodologies

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This report presents work from the first nine month of a project investigating design methodologies and selection tools to promote innovations in sports equipment. Particular consideration is given to product design improvements and new market adoption of advanced materials and processes. Our aim is to couple appropriately similar technologies so as to provide a method of transfer between sports equipment designs. We would like to make barriers between isolated sports equipment markets more transparent without releasing proprietary information. A brief history of sports equipment design is included; issues particularly relevant to material and process technologies are outlined for sports equipment. A start has been made on a software program to express most of this information in a concise and accessible format. The methodology is reviewed with some industrial case studies. There is a need for further research to extend and address the design issues raised in this document; a suggested research programme is attached.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the need for computer support in aerospace design. A review of current design methodologies and computer support tools is presented and the need for further support in aerospace design, particularly in the early formative stages of the design process, is discussed. A parameter-based model of design, founded on the assumption that a design process can be constructed from a predefined set of tasks, is proposed for aerospace design. This is supported by knowledge of possible tasks in which the confidence in key design parameters is used as a basis for identifying, or signposting, the next task. A prototype implementation of the signposting model, for use in the design of helicopter rotor blades, is described and results from trials of the tool are presented. Further areas of research are discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the steam turbines which provide most of our electricity to the jet engines which have shrunk our World, turbomachines undoubtedly play a major role in life today. Competition in the turbomachinery industry is fiercely strong [Wisler, 1998], hence good aerodynamic design is vital. However, with efficiency levels already close to their theoretical maxima, companies are increasingly looking to reduce costs and increase reliability through improved design practice. Computational Fluid Dynamics (CFD) can make a strong contribution to assisting this process as it has the potential to increase performance while reducing cost. The situation is, however, complicated by an ever decreasing number of engineers with sufficient design experience to reap the full benefits offered by CFD. With the large risks involved, novice designers of today are increasingly confined to refining old designs rather than gaining experience, like their forebears, through 'clean sheet' exercises. Hence it is desirable to capture the knowledge and experience of older designers, before it is lost, to assist the engineers of tomorrow. It is therefore the aim of this project to produce a design support tool which will not only store the appropriate CFD codes, but also provide a dynamic signpost (based on elicited knowledge and experience) to advise the engineer in their use. The signposting methodology developed for the aerospace industry [Clarkson and Hamilton, 1997] will provide the basic framework for the tool. This paper reviews current turbomachinery design practice (including an examination of the relevant CFD) in order to establish the important issues which a support tool must address. Current design support methodologies and their propriety are then reviewed, followed by a detailed description of the signposting concept. It then sets out a clear statement of the objectives for the research and the methods proposed to meet them. The paper concludes with a timetable of the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operational uncertainties such as throttle excursions, varying inlet conditions and geometry changes lead to variability in compressor performance. In this work, the main operational uncertainties inherent in a transonic axial compressor are quantified to deter- mine their effect on performance. These uncertainties include the effects of inlet distortion, metal expansion, ow leakages and blade roughness. A 3D, validated RANS model of the compressor is utilized to simulate these uncertainties and quantify their effect on polytropic efficiency and pressure ratio. To propagate them, stochastic collocation and sparse pseudospectral approximations are used. We demonstrate that lower-order approximations are sufficient as these uncertainties are inherently linear. Results for epistemic uncertainties in the form of meshing methodologies are also presented. Finally, the uncertainties considered are ranked in order of their effect on efficiency loss. © 2012 AIAA.